ANDES Manual
Release 1.2.7

Hantao Cui

Dec 09, 2020

ANDES Manual

1 Installation

1.1

1.2

1.3
1.4

Environment
Setting Up Miniconda
Existing Python Environment (Advanced)

1.1.1

1.1.2

Install ANDES

1.2.1

1.2.2

Updating ANDES
Performance Packages
1.4.1

2 Tutorial

2.1

2.2

Command Line Usage
BasicUsage
andes selftest
andes prepare
andesrun oL
andesplot,
andesdoc
andesmisc
Interactive Usage
Jupyter Notebook
Import
Verbosity
Making a System

2.1.1
2.1.2
2.1.3
2.14
2.1.5
2.1.6
2.1.7

221
222
223
224
225
2.2.6
227
2.2.8
229
2.2.10
2.2.11

KVXOPT

Inspecting Parameter

Running Studies
Checking ExitCode

Plotting TDS Results

ExtractingData
Pretty Print of Equations
FindingHelp

UserMode
DevelopmentMode

3

2.3 Notebook Examples e e e e e 23
24 TOFormats o o i e e e e e e e e e e 23
2.4.1 InputFormats e e e e e e 23
242 ANDES xIsx Format e 24
2.5 Cheatsheet e e e e e e e e 26
2.6 Make Documentation e e e e e e e e 26
Modeling Cookbook 27
3.1 System ... e e e e e e e e e e 27
311 OVEIVIEW . . o o v o e 27
3.1.2 DAEStorage i i e e e e 30
3.1.3 Modeland DAE Values it 31
3.1.4 Calling Model Methods e 32
3.1.5 Configuration e e e e e e e e e e e e 33
3.2 Models e e e e 34
321 ModelData e e e e e e 34
322 DefineaDAEModel 36
3.2.3 Dynamicity Underthe Hood 39
3.24 Equation Generationo 40
3.2.5 Jacobian Storage e e e e e e 41
3.2.6 Inmitialization e e e e e e e e e e e e e 42
3.2.7 Additional Numerical Equations 42
33 AtomTypes. e e e e 43
3.3.1 ValueProvider 43
332 EquationProvider 44
3.4 Parameters e e e e e e e e e e e e e e e e 44
3.4.1 Background e e 44
342 DataParameterso e e e e 44
3.4.3 Numeric Parameters e e 46
3.4.4 External Parameters e e 48
345 Timer Parameter e e e 48
3.5 Variables e e e e e e e 49
3.5.1 Variable, Equation and Address 49
3.5.2 Value and Equation Strings o 50
3.5.3 Values Between DAEand Models 50
3.5.4 Flags for Value Overwriting o i it it et et e e 50
355 AvsetterExample L e 51
3.6 SErVICES . . . v v i e e e e e e e e e e 54
3.6.1 Internal Constants L e e e 55
3.6.2 External Constants e e e 57
3.6.3 Shape Manipulators 58
3.6.4 Value Manipulation 62
3.6.5 IdxandReferences e e 62
3,66 Events e e 64
3.6.7 DataSelect e e e e e e e e 65
3.6.8 Miscellaneous e e 66
37 DISCIELe . . . v v o e 67
3.77.1 Background L. e 67

372 LIMItErs o o o e e e e e e 67

373 Comparerso v e e e e e e e e e e e e e e e e e 69
374 Deadband e e e e 71
3.8 BIockS e e e e e 72
3.8.1 Background e e 72
3.8.2 Transfer Functions e 74
3.8.3 Saturation e e e e e 80
3.84 Others e 80
3.9 Examples oL e e e e e e 81
3.9.1 TGOV . . . e e 81
3.9.2 IEEEST e e 84
Test Cases 89
4.1 DITECOTY . . v v v o e 89
42 MATPOWER Cases o . v i it i e e e e e e e e e e e e e e e e e e 90
Model References 95
5.1 ACLINE o e e e 96
S1.1 0 Lineo e e 96
5.2 ACTopology o o e e e e e e 98
521 BUS . .o e e 98
5.3 Calculation e e 99
53.1 ACE e 100
532 ACEcC e e 101
533 COIL e e 102
54 Collection e e e e e e e 104
5.4.1 ATCA e e e e e e 104
5.5 DCLInK e e e e e 104
551 Ground e 104
5.52 R e 105
5.5.3 L. e e 106
554 C o e 107
555 RCp .. oo e e 108
556 RCs . . o e 109
557 RLs . . . e e e 110
558 RLGCS e e 111
559 RLCp . . . o e e 112
5.6 DCTopology i e e e e e e 113
5.6.1 Node e e e 113
57 DG .o e e 114
5.7.1 PVDI . . . e 114
5.8 DynLoad e e e 120
581 ZIP . e 120
582 FLoad e e 122
5.9 EXCIEr o ot e e e e e e e 123
59.1 EXDC2 e e e 123
5.9.2 IEEEX1 e e 127
5.9.3 ESDC2A e e e e e 131

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25

5.26

594 EXSTI .. e 135

5.9.5 ESST3A e e e e 138
5.9.6 SEXS . .. e e e e 143
Experimental L e e 145
5001 PI2. . o e e e e e 146
5.10.2 TestDBI1 o o e e e e e e e e e e e 147
5103 TestPl o e e e e e e 148
5.10.4 TestLagAWFreeze e 150
5.10.5 FixedGen L e e e e e e e 151
FreqMeasurement L L e 152
5A1.1 BusFreq o o e e e 152
5.11.2 BusROCOF e e e e 154
Information L e e e e e e e e e 155
SA2. 1 Summary .. oL .. e e e e e e e e e e e e e e e e 155
MOtOT o e e e e e e e e e e e e e e e 156
5.13.1 Motor3 e e e e e e e e e e 156
5.13.2 MOtOrS . . . o e e e e e e e e e e e e e e 158
PSS . e e e 161
5.14.1 IEEEST e e e e 161
5142 ST2CUT o e e e e e e e e e e e 166
PhasorMeasurement e e e e 171
5151 PMU . . L e e e e e e e 171
RenAerodynamics L L e e e e e e e 172
5.16.1 WTARAL . . . o e e e e e e 173
5.16.2 WTARVI e e e e e 174
RenEXciter o e e e e e 174
5.17.1 REECAL e e e e 175
RenGen e e e e 183
5.18.1 REGCATL e e e e e 183
RenGovernor e e e e e e 187
5.19.1 WTDTAL e e e e e e e e 187
5192 WTDS . . . e e e e e 190
RenPitch e e e e 191
5.20.1 WTPTAL e e e e e e 192
RenPlant e e e e 194
5.21.1 REPCA1 e e e e e e 194
RenTorque e e e e 200
5.22.1 WTTQAT e e e e e e e e e 200
StaticACDC e e e e e e e e e e 203
5.23.1 VSCShunt e e e e e 204
StaticGen e e e e e e e e 206
5241 PV . e e e e 206
5242 Slack e e e e 208
StaticLoad e e e e e e e e e 210
5251 PQ . . o e e e e 210
StaticShunt e e e e e e e e e e e 212
5.26.1 Shunt e e e e e 212
5.26.2 ShuntSw e e e e e e e 213

10

5.27 SynGen

5.27.1 GENCLS e e e 214
5.27.2 GENROU e e e 217
5.28 TimedEvent. L e 223
5.28.1 Toggler e e e e e e e e e 223
5282 Fault. e e 223
5283 Alter. e e e e 225
5.29 TurbineGov L e e e e e e e e e e e e 225
5291 TG2 . . . e e e e 225
5.29.2 TGOV . . . e e e 228
5.29.3 TGOVIN e e e 230
5294 TGOVIDB e e e 233
5.29.5 IEEEGI e e e 235
5.30 Undefined e e e e e 239
Config References 241
6.1 System e e e e 241
6.2 PFlOW e e e e 242
6.3 TDS . . . e e 242
6.4 EIG e e e e e 243
Frequently Asked Questions 245
7.1 General e e e e e e e 245
7.2 Modeling e e e e e e 245
7.2.1 Admittance matriX e e e e e e e e e e e e e 245
Troubleshooting 247
8.1 Import Brrors e e e 247
8.1.1 ImportError: DLL load failed 247
8.2 Runtime Errors e e e e e e e 247
8.2.1 EOFError: Ranoutofinput. 247
Miscellaneous 249
0.1 NOLES . . v o e e e e e e e e e e e e e e 249
9.1.1 ModelingBlocks e 249
9.2 PerUnit System o e e e e e e e e e e e e 250
9.3 Profiling Import e e 250
Release Notes 251
10.1 VI2ZNOtes o e e e e e e 251
10.1.1 V127 o e e e e e 251
10.1.2 v1.2.6 (2020-12-01) e e e e e e 251
10.1.3 v1.2.5(Q020-11-19) o o e e e e 252
10.1.4 v1.2.4(2020-11-13) o o o e e e e e 252
10.1.5 v1.2.3(2020-11-02) o o e e e e e 252
10.1.6 v1.2.2 (2020-11-01) o o o e e e e 252
10.1.7 v1.2.1 (2020-10-11) o o e e e e e 252
10.1.8 v1.2.0 (2020-10-10) o o v i e e e e e 253

10.2 VILINOtES . . . o o o o e e e e e e e 253
10.2.1 v1.1.5(2020-10-08) o e e 253
10.2.2 v1.1.4 (2020-09-22) e e e 253
10.2.3 v1.1.3(2020-09-05) e e e 253
10.2.4 v1.1.2(2020-09-03) e e e 254
10.2.5 v1.1.1(2020-09-02) o e e e 254
10.2.6 v1.1.0 (2020-09-01) e e e 254

103 VILONOtES o o e e e e e 254
10.3.1 v1.0.8 (2020-07-29) e e 254
10.3.2 v1.0.7 (2020-07-18) e e e e e 255
10.3.3 v1.0.6 (2020-07-08) e e e 255
10.3.4 v1.0.5(2020-07-02) o e e 255
10.3.5 v1.0.4(2020-06-26) e e e e e 255
10.3.6 v1.0.3(2020-06-02) e e e 256
10.3.7 v1.0.2(2020-06-01) o e e e 256
10.3.8 v1.0.1 (2020-05-27) o v i e e e e e 256
10.3.9 v1.0.0 (2020-05-25) e e e e e 256

10.4 Pre-v1.0.0 e 256
10.4.1 v0.9.4 (2020-05-20) e e e e e 256
10.4.2 v0.9.3 (2020-05-05) e e e 257
10.4.3 v0.9.1 (2020-05-02) e e e e e e 257
10.4.4 v0.8.8 (2020-04-28) e e 258
10.4.5 v0.8.7 (2020-04-28) e e 258
10.4.6 v0.8.6 (2020-04-21) o e e e 258
10.4.7 v0.8.5(2020-04-17) o e e e e 258
10.4.8 v0.8.4 (2020-04-07) o o e e e e 259
10.4.9 v0.8.3(2020-03-25) e e e 259
10.4.10 v0.8.0 (2020-02-12) o o o e e e e e 259
10.4.11 v0.6.9 (2020-02-12) o e e e e 259

11 License 261

11.1 GNU Public License v3 e 261

12 Subpackages 263

12.1 andes.corepackage e e 263
12.1.1 Submodules e e e 263
12.1.2 andes.core.block module 263
12.1.3 andes.core.discretemodule e 282
12.1.4 andes.coremodel module 292
12.1.5 andes.core.parammodule L Lo L 304
12.1.6 andes.core.servicemodule e 310
12.1.7 andes.core.solvermodule 324
12.1.8 andes.core.commonmodule e 328
12.1.9 andes.core.varmoduleo 330
12.1.10 Module contents e e e e e e e e e e 334

12.2 andes.iopackage e e e e 335
12.2.1 Submodules e 335
12.2.2 andes.io.matpowermodule oL oo 335

Vi

12.3

12.4

12.5

12.6

12.2.3 andes.io.pssemodule

13 Submodules

13.1
13.2
13.3
13.4
13.5

12.2.4 andes.do.txtmodule L
12.2.,5 andesioxlsxmodule e
12.2.6 Module contents e e e e e e e e e e e e
andes.models package e e e e
12.3.1 Submodules e e e e e e e e
12.3.2 andes.models.areamodule
12.3.3 andes.models.busmodule L o
12.3.4 andes.models.governormodule oL
12.3.5 andes.models.groupmodule L oo
12.3.6 andes.models.linemodule
12.3.7 andes.models.pgmodule
12.3.8 andes.models.pvmodule
12.3.9 andes.models.shuntmodule,
12.3.10 andes.models.synchronousmodule
12.3.11 andes.models.timermodule
12.3.12 Module contents e e e e e e e e e e e e e
andes.routines package oL e e e e e
12.4.1 Submodules e e e
12.4.2 andes.routines.basemodule L L
12.4.3 andes.routines.eigmodule oL L Lo
12.4.4 andes.routines.pflowmodule L.
12.4.5 andes.routines.tdsmodule Lo Lo
124.6 Module contents e e e e e e e e e e e e e
andes.utils package L. L e e e e e e e
12.5.1 Submodules e e e e e e e
12.5.2 andes.utils.cachedmodule,
12.5.3 andes.utils.pathsmodule L oo
12.5.4 andes.utils.funcmodule
12.5.5 andes.utilsmiscmodule e
12.5.6 andes.utils.tabmodule
12.5.7 Module contentst e e e e e e e e e e e e
andes.variables package e
12.6.1 Submodules e e e e
12.6.2 andes.variables.daemodule oo
12.6.3 andes.variables.filemanmodule
12.6.4 andes.variables.report module oL oL
12.6.5 Module contents e e e e e e e e e e
andes.climodule
andesmainmodule L L e e e e e
andes.plotmodule L
andes.shared module e
andes.systemmodule oL e

14 Indices and tables

363
363
363
366
372
372

381

vii

Python Module Index 383

Index 385

viii

ANDES Manual, Release 1.2.7

ANDES is a Python-based free software package for power system simulation, control and analysis. It
establishes a unique hybrid symbolic-numeric framework for modeling differential algebraic equations
(DAESs) for numerical analysis. Main features of ANDES include

a unique hybrid symbolic-numeric approach to modeling and simulation that enables descriptive DAE
modeling and automatic numerical code generation

arich library of transfer functions and discontinuous components (including limiters, dead-bands, and
saturation) available for prototyping models, which can be readily instantiated as multiple devices for
system analysis

comes with the Newton method for power flow calculation, the implicit trapezoidal method for time-
domain simulation, and full eigenvalue calculation

strictly verified models with commercial software. ANDES obtains identical time-domain simulation
results for IEEE 14-bus and NPCC system with GENROU and multiple controller models. See the
verification link for details.

developed with performance in mind. While written in Python, ANDES comes with a performance
package and can finish a 20-second transient simulation of a 2000-bus system in a few seconds on a
typical desktop computer

out-of-the-box PSS/E raw and dyr file support for available models. Once a model is developed, inputs
from a dyr file can be readily supported

an always up-to-date equation documentation of implemented models

ANDES is currently under active development. To get involved,

Follow the tutorial at https://andes.readthedocs.io

Checkout the Notebook examples in the examples folder

Try ANDES in Jupyter Notebook with Binder

Download the PDF manual at download

Report issues in the GitHub issues page

Learn version control with the command-line git or GitHub Desktop

If you are looking to develop models, read the Modeling Cookbook

This work was supported in part by the Engineering Research Center Program of the National Science
Foundation and the Department of Energy under NSF Award Number EEC-1041877 and the CURENT
Industry Partnership Program. ANDES is made open source as part of the CURENT Large Scale Testbed
project.

ANDES is developed and actively maintained by Hantao Cui. See the GitHub repository for a full list of
contributors.

ANDES Manual 1

https://andes.readthedocs.io/en/stable/tutorial.html
https://github.com/cuihantao/andes/tree/master/examples
https://mybinder.org/v2/gh/cuihantao/andes/master
https://andes.readthedocs.io/_/downloads/en/stable/pdf/
https://github.com/cuihantao/andes/issues
https://git-scm.com/docs/gittutorial
https://help.github.com/en/desktop/getting-started-with-github-desktop
https://andes.readthedocs.io/en/stable/modeling.html
https://curent.utk.edu
https://cui.eecps.com

ANDES Manual, Release 1.2.7

2 ANDES Manual

CHAPTER 1

Installation

ANDES can be installed in Python 3.6+. Please follow the installation guide carefully.

1.1 Environment

1.1.1 Setting Up Miniconda
We recommend the Miniconda distribution that includes the conda package manager and Python. Down-
loaded and install the latest Miniconda (x64, with Python 3) from https://conda.io/miniconda.html.

Step 1: Open terminal (on Linux or maxOS) or Anaconda Prompt (on Windows, not the cmd program!!).
Make sure you are in a conda environment - you should see (base) prepended to the command-line
prompt, such as (base) C:\Users\user>.

Create a conda environment for ANDES (recommended)

conda create ——-name andes python=3.7

Activate the new environment with

conda activate andes

You will need to activate the andes environment every time in a new Anaconda Prompt or shell.

Step 2: Add the conda-forge channel and set it as default

conda config —-add channels conda-forge
conda config —--set channel_priority flexible

If these steps complete without an error, continue to /nstall Andes.

https://conda.io/miniconda.html

ANDES Manual, Release 1.2.7

1.1.2 Existing Python Environment (Advanced)

This is for advanced user only and is not recommended on Microsoft Windows. Please skip it if you have
set up a Conda environment.

Instead of using Conda, if you prefer an existing Python environment, you can install ANDES with pip:

python3 -m pip install andes

If you see a Permission denied error, you will need to install the packages locally with —user

1.2 Install ANDES

ANDES can be installed in the user mode and the development mode.
* If you want to use ANDES without modifying the source code, install it in the User Mode.

* If you want to develop models or routine, install it in the Development Mode.

1.2.1 User Mode

In the Anaconda environment, run

conda install andes

You will be prompted to confirm the installation,

This command installs ANDES into the active environment, which should be called andes if you followed
all the above steps.

Note: To use andes, you will need to activate the andes environment every time in a new Anaconda
Prompt or shell.

1.2.2 Development Mode

This is for users who want to hack into the code and, for example, develop new models or routines. The
usage of ANDES is the same in development mode as in user mode. In addition, changes to source code
will be reflected immediately without re-installation.

Step 1: Get ANDES source code

As a developer, you are strongly encouraged to clone the source code using git from either your fork or
the original repository:

git clone https://github.com/cuihantao/andes

4 Chapter 1. Installation

ANDES Manual, Release 1.2.7

In this way, you can easily update to the latest source code using git.

Alternatively, you can download the ANDES source code from https://github.com/cuihantao/andes and ex-
tract all files to the path of your choice. Although this will work, this is not recommended since tracking
changes and pushing back code would be painful.

Step 2: Install dependencies
In the Anaconda environment, use cd to change directory to the ANDES root folder.

Install dependencies with

conda install —-file requirements.txt
conda install --file requirements-dev.txt

Step 3: Install ANDES in the development mode using

python3 -m pip install -e .

Note the dot at the end. Pip will take care of the rest.

1.3 Updating ANDES

Regular ANDES updates will be pushed to both conda-forge and Python package index. It is recom-
mended to use the latest version for bug fixes and new features. We also recommended you to check the
Release Notes before updating to stay informed of changes that might break your downstream code.

Depending you how you installed ANDES, you will use one of the following ways to upgrade.

If you installed it from conda (most common for users), run

conda install -c conda-forge —--yes andes

If you install it from PyPI (namely, through pip), run

python3 -m pip install —--yes andes

If you installed ANDES from source code, and the source was cloned using git, you can use git pull
to pull in changes from remote. However, if your source code was downloaded, you will have to download
the new source code again and manually overwrite the existing one.

In rare cases, after updating the source code, command-line andes will complain about missing depen-
dency. If this ever happens, it means the new ANDES has introduced new dependencies. In such cases,
reinstall andes in the development mode to fix. Change directory to the ANDES source code folder that
contains setup.py and run

python3 -m pip install -e .

1.4 Performance Packages

1.3. Updating ANDES 5

https://github.com/cuihantao/andes

ANDES Manual, Release 1.2.7

Note: Performance packages can be safely skipped and will not affect the functionality of ANDES.

1.4.1 KVXOPT
KVXOPT is a fork of the CVXOPT with KLU by Uriel Sandoval (@sanurielf). KVXOPT interfaces to
KLU, which is roughly 20% faster than UMFPACK for circuit simulations based on our testing.

KVXOPT contains inplace add and set functions for sparse matrix contributed by CURENT. These inplace
functions significantly speed up large-scale system simulations.

To install KVXOPT run

python -m pip install kvxopt

6 Chapter 1. Installation

CHAPTER 2

Tutorial

ANDES can be used as a command-line tool or a library. The command-line interface (CLI) comes handy
to run studies. As a library, it can be used interactively in the IPython shell or the Jupyter Notebook. This
chapter describes the most common usages.

Please see the cheat sheet if you are looking for quick help.

2.1 Command Line Usage

2.1.1 Basic Usage

ANDES is invoked from the command line using the command andes. Running andes without any
input is equal to andes —h or andes —-help. It prints out a preamble with version and environment
information and help commands:

Version 1.1.2
Python 3.7.6 on Linux, 09/05/2020 12:23:05 PM

|
/N
/NN -< |
/NN TN N/ /]

This program comes with ABSOLUTELY NO WARRANTY.

usage: andes [-h] [-v {1,10,20,30,40,50}]
{run,plot,doc,misc, prepare, selftest}

positional arguments:
{run,plot,doc,misc, prepare, selftest}
[run] run simulation routine; [plot] plot simulation
results; [doc] quick documentation; [prepare] run the
symbolic-to-numeric preparation; [misc] miscellaneous
functions.

(continues on next page)

ANDES Manual, Release 1.2.7

(continued from previous page)

optional arguments:
-h, —-help show this help message and exit
-v {1,10,20,30,40,50}, --verbose {1,10,20,30,40,50}
Program logging level in 10-DEBUG, 20-INFO,
30-WARNING, 40-ERROR or 50-CRITICAL.

Note: If the andes command is not found, check if (1) the installation was successful, and (2) you have
activated the environment where ANDES is installed.

The first level of commands are chosen from {run, plot,misc, prepare, selftest}. Each com-
mand contains a group of sub-commands, which can be looked up with —h. For example, use andes run
—h to look up the sub-commands in run. The most commonly used commands will be explained in the
following.

andes has an option for the program verbosity level, controlled by —v or ——verbose. Accepted levels
are the same as in the 1ogging module: 10 - DEBUG, 20 - INFO, 30 - WARNING, 40 - ERROR, 50 -
CRITICAL. To show debugging outputs, use —v 10.

2.1.2 andes selftest

After installation, it is encouraged to use andes selftest from the command line to test functionality.
It might take a minute to run the full self-test suite. An example output looks like

test_docs (test_lst_system.TestCodegen) ... ok
test_alter_param (test_case.Test5Bus) ... ok

(outputs are omitted)

test_pflow_mpc (test_pflow_matpower.TestMATPOWER) ... ok

Ran 23 tests in 13.834s

OK

There may be more cases than what is shown above. Make sure that all tests have passed.

Warning: ANDES is getting updates frequently. After updating your copy, please run andes
selftest to confirm the functionality. The command also makes sure the generated code is up to
date. See andes prepare for more details on automatic code generation.

8 Chapter 2. Tutorial

ANDES Manual, Release 1.2.7

2.1.3 andes prepare

The symbolically defined models in ANDES need to be generated into numerical code for simulation. The
code generation can be manually called with andes prepare. Generated code are stored in the folder
.andes/calls.pkl in your home directory. In addition, andes selftest implicitly calls the code
generation. If you are using ANDES as a package in the user mode, you won’t need to call it again.

Option —g or ——quick (enabled by default) can be used to speed up the code generation. It skips the
generation of BIEX -formatted equations, which are only used in documentation and the interactive mode.

For developers, andes prepare needs to be called immediately following any model equation modifica-
tion. Otherwise, simulation results will not reflect the new equations and will likely lead to an error. Option
—ior--incremental, instead of —qg, can be used to further speed up the code generation during model
development. andes prepare -1i only generates code for models with modified equations.

2.1.4 andes run

andes run is the entry point for power system analysis routines. andes run takes one positional
argument, £ilename , along with other optional keyword arguments. filename is the test case path,
either relative or absolute. Without other options, ANDES will run power flow calculation for the provided
file.

Routine

Option —r or —routine is used for specifying the analysis routine, followed by the routine name. Avail-
able routine names include pflow, tds, eig. pflow for power flow, tds for time domain simulation,
and eig for eigenvalue analysis. pflow is default even if —r is not given.

For example, to run time-domain simulation for kundur_full.x1sx in the current directory, run

andes run kundur_full.xlsx —-r tds

The file is located at andes/cases/kundur/kundur_full.x1sx relative to the source code root
folder. Use cd to change directory to that folder on your machine.

Two output files, kundur_full_out.lst and kundur_full_out.npy will be created for variable
names and values, respectively.

Likewise, to run eigenvalue analysis for kundur_full.x1lsx, use

andes run kundur_full.xlsx -r eig

The eigenvalue report will be written in a text file named kundur_full_eig.txt.

Power flow

To perform a power flow study for test case named kundur_full.x1sx in the current directory, run

2.1. Command Line Usage 9

ANDES Manual, Release 1.2.7

andes run kundur_full.xlsx

The full path to the case file is also accepted, for example,

andes run /home/user/andes/cases/kundur/kundur_full.xlsx

Power flow reports will be saved to the current directory in which andes is called. The power flow report
contains four sections: a) system statistics, b) ac bus and dc node data, c) ac line data, and d) the initialized
values of other algebraic variables and state variables.

Time-domain simulation

To run the time domain simulation (TDS) for kundur_full.x1sx, run

andes run kundur_full.xlsx —-r tds

The output looks like:

Parsing input file </Users/user/repos/andes/tests/kundur_full.xlsx>
Input file kundur_full.xlsx parsed in 0.5425 second.
-> Power flow calculation with Newton Raphson method:

O: |F(x)| = 14.9283
1: |F(x)| = 3.60859
2: |F(x)|] = 0.170093
3: |F(x)| = 0.00203827
4: |F(x)| = 3.76414e-07

Converged in 5 iterations in 0.0080 second.

Report saved to </Users/user/repos/andes/tests/kundur_full_ out.txt> in 0.0036,
—second.

—> Time Domain Simulation:

Initialization tests passed.

Initialization successful in 0.0152 second.

0% 1 | 0/100 [00:00<?, 2%/
5]

<Toggle 0>: Applying status toggle on Line idx=Line_38
00| -———————"—————————————— | 100/100 [00:03<00:00, 28.99%/s]

Simulation completed in 3.4500 seconds.
TDS outputs saved in 0.0377 second.
—> Single process finished in 4.4310 seconds.

This execution first solves the power flow as a starting point. Next, the numerical integration simulates 20
seconds, during which a predefined breaker opens at 2 seconds.

TDS produces two output files by default: a NumPy data file ieeel4_syn_out.npy and a variable
name list file ieeel4_syn_out.lst. The list file contains three columns: variable indices, variable
name in plain text, and variable name in the ZIEX format. The variable indices are needed to plot the
needed variable.

10 Chapter 2. Tutorial

ANDES Manual, Release 1.2.7

Disable output

The output files can be disabled with option ——no-output or —n. It is useful when only computation is
needed without saving the results.

Profiling

Profiling is useful for analyzing the computation time and code efficiency. Option ——profile enables the
profiling of ANDES execution. The profiling output will be written in two files in the current folder, one
ending with _prof.txt and the other one with _prof.prof.

The text file can be opened with a text editor, and the . prof file can be visualized with snakeviz, which
can be installed with pip install snakeviz

If the output is disabled, profiling results will be printed to stdio.
Multiprocessing
ANDES takes multiple files inputs or wildcard. Multiprocessing will be triggered if more than one valid

input files are found. For example, to run power flow for files with a prefix of caseb5 and a suffix (file
extension) of .m, run

andes run casebx.m

Test cases that match the pattern, including case5.m and case57 . m, will be processed.

Option ——ncpu NCPU can be used to specify the maximum number of parallel processes. By default, all
cores will be used. A small number can be specified to increase operation system responsiveness.

Format converter
ANDES recognizes a few input formats and can convert input systems into the x1sx format. This function
is useful when one wants to use models that are unique in ANDES.

The command for converting is ——convert (or —c), following the output format (only x1sx is currently
supported). For example, to convert case5 . m into the x1sx format, run

andes run caseb.m —-—-convert xlsx

The output messages will look like

Parsing input file </Users/user/repos/andes/cases/matpower/caseb.m>

CASE5 Power flow data for modified 5 bus, 5 gen case based on PJM 5-bus
—system

Input file case5.m parsed in 0.0033 second.

x1sx file written to </Users/user/repos/andes/cases/matpower/case5.xlsx>
Converted file /Users/user/repos/andes/cases/matpower/caseb.xlsx written in 0.
5079 second.

—-> Single process finished in 0.8765 second.

2.1. Command Line Usage 11

ANDES Manual, Release 1.2.7

Note that ——convert will only create sheets for existing models.
In case one wants to create template sheets to add models later, -——convert-all can be used instead.

If one wants to add workbooks to an existing xIsx file, one can combine option ——add-book ADD_BOOK
(or -b ADD_BOOK), where ADD_BOOK can be a single model name or comma-separated model names
(without any space). For example,

andes run kundur.raw -c -b Toggler

will convert file kundur . raw into an ANDES xlsx file (kundur.xIsx) and add a template workbook for
Toggler.

Warning: With —-—add-book, the xIsx file will be overwritten. Any empty or non-existent models
will be REMOVED.

PSS/E inputs

To work with PSS/E input files (.raw and .dyr), one need to provide the raw file as casefile and pass
the dyr file to ——addfile. For example, in andes/andes/cases/wecc, one can run the power flow
using

andes run wecc.raw

and run a no-disturbance time-domain simulation using

andes run wecc.raw ——addfile wecc_full.dyr -r tds

To create add a disturbance, there are two options. The recommended option is to convert the PSS/E data
into an ANDES xIsx file, edit and run (see the previous subsection).

The alternative is to edit the dyr file and append lines customized for ANDES models. This is for advanced
users after referring to andes/io/psse—dyr.yaml, at the end of which one can find the format of
Toggler:

=== Custom Models ===

Toggler:
inputs:
- model
- dev
-t

To define two Togglers in the dyr file, one can append lines to the end of the file using, for example,

Line 'Toggler' Line_2 1 /
Line '"Toggler' Line_2 1.1 /

which is separated by spaces and ended with a slash. The second parameter is fixed to the model name quoted
by a pair of single quotation marks, and the others correspond to the fields defined in the above‘‘inputs*‘.

12 Chapter 2. Tutorial

ANDES Manual, Release 1.2.7

Note: When working with PSS/E data, the recommended practice is to edit model dynamic parameters
directly in the dyr file so that the data can be easily used by other tools.

2.1.5 andes plot

andes plot is the command-line tool for plotting. It currently supports time-domain simulation data.
Three positional arguments are required, and a dozen of optional arguments are supported.

positional arguments:

Argu- Description

ment

filename | simulation output file name, which should end with out. File extension can be
omitted.

X the X-axis variable index, typically O for Time

y Y-axis variable indices. Space-separated indices or a colon-separated range is
accepted

For example, to plot the generator speed variable of synchronous generator 1 omega GENROU 0 versus
time, read the indices of the variable (2) and time (0), run

andes plot kundur_full _out.lst 0 2

In this command, andes plot is the plotting command for TDS output files. kundur_full_out.lst
is list file name. 0O is the index of Time for the x-axis. 2 is the index of omega GENROU 0. Note that for
the the file name, either kundur_full_out.1lst or kundur_full_out.npy works, as the program
will automatically extract the file name.

The y-axis variabla indices can also be specified in the Python range fashion . For example, andes plot
kundur_full_out.npy 0 2:21:6 will plot the variables at indices 2, 8, 14 and 20.

andes plot will attempt to render with XTEX if dvipng program is in the search path. Figures rendered
by IXIEX is considerably better in symbols quality but takes much longer time. In case KXTEX is available
but fails (frequently happens on Windows), the option —d can be used to disable XX rendering.

Other optional arguments are listed in the following.

optional arguments:

2.1. Command Line Usage 13

ANDES Manual, Release 1.2.7

Argument Description

optional arguments:

-h, —help show this help message and exit

—xmin LEFT minimum value for X axis

—xmax RIGHT maximum value for X axis

—ymax YMAX maximum value for Y axis

—ymin YMIN minimum value for Y axis

—find FIND find variable indices that matches the given pattern

—xargs XARGS find variable indices and return as a list of arguments usable with "|
xargs andes plot"

—exclude EXCLUDE pattern to exclude in find or xargs results

-x XLABEL, —xlabel | x-axis label text

XLABEL

-y YLABEL, -ylabel | y-axis label text

YLABEL

-s, —savefig save figure. The default fault is png.

-format SAVE_ FORMAT

format for savefig. Common formats such as png, pdf, jpg are sup-
ported

—dpi DPI image resolution in dot per inch (DPI)
-g, —grid grid on

—greyscale greyscale on

-d, —no-latex disable LaTeX formatting

-n, —no-show

do not show the plot window

—ytimes YTIMES

scale the y-axis values by YTIMES

-c, —tocsv

convert npy output to csv

2.1.6 andes doc

andes doc is a tool for quick lookup of model and routine documentation. It is intended as a quick way

for documentation.

The basic usage of andes doc is to provide a model name or a routine name as the positional argument.
For a model, it will print out model parameters, variables, and equations to the stdio. For a routine, it will
print out fields in the Config file. If you are looking for full documentation, visit andes.readthedocs.io.

For example, to check the parameters for model Toggler, run

$ andes doc Toggler
Model <Toggler> in Group <TimedEvent>

Time-based connectivity status toggler.

Parameters

Name | Description | Default Unit Type I

—Properties

7777777 B R
(continues on next page)

14 Chapter 2. Tutorial

https://andes.readthedocs.io

ANDES Manual, Release 1.2.7

(continued from previous page)

u | connection status 1 bool | NumParam |
name | device name | DataParam |
model | Model or Group of the device | DataParam |
—mandatory
| to control | | |
dev | idx of the device to control | | | IdxParam [
—mandatory
t | switch time for connection (I | | TimerParam |
—mandatory
| status | | | |
To list all supported models, run
$ andes doc -1
Supported Groups and Models
Group | Models
_________________ +___
ACLine | Line
ACTopology | Bus
Collection | Area
DCLink | Ground, R, L, C, RCp, RCs, RLs, RLCs, RLCp
DCTopology | Node
Exciter | EXDC2
Experimental | PI2
FregMeasurement | BusFreq, BusROCOF
StaticACDC | VSCShunt
StaticGen | PV, Slack
StaticLoad | PO
StaticShunt | Shunt
SynGen | GENCLS, GENROU
TimedEvent | Toggler, Fault
TurbineGov | TG2, TGOV1
To view the Config fields for a routine, run
$ andes doc TDS
Config Fields in [TDS]
Option | Value | Info | Acceptable
—values
——————————— e s
R
sparselib | klu | linear sparse solver name | ('klu', 'umfpack
=")
tol | 0.000 | convergence tolerance | float
t0 | O | simulation starting time | >=0
tf | 20 | simulation ending time | >t0
fixt | 0 | use fixed step size (1) or variable | (0, 1)
\ [(0) |
shrinkt | 1 | shrink step size for fixed method if | (0, 1)

(continues on next page)

2.1. Command Line Usage

15

ANDES Manual, Release 1.2.7

(continued from previous page)

\ | not converged
tstep | 0.010 | the initial step step size | float
max_iter | 15 | maximum number of iterations | >=10

2.1.7 andes misc

andes misc contains miscellaneous functions, such as configuration and output cleaning.

Configuration

ANDES uses a configuration file to set runtime configs for the system routines, and models.
——save-config saves all configs to a file. By default, it saves to ~/ . andes/andes. conf file, where
~ is the path to your home directory.

With ——edit-config, you can edit ANDES configuration handy. The command will automatically save
the configuration to the default location if not exist. The shorter version ——edit can be used instead asn
Python automatically matches it with ——edit-config.

You can pass an editor name to ——edit, such as ——edit wvim. If the editor name is not provided, it
will use the following defaults: - Microsoft Windows: notepad. - GNU/Linux: the SEDITOR environment
variable, or vim if not exist.

For macOS users, the default is vim. If not familiar with vim, you can use nano with -—edit nano or
TextEdit with ——edit "open -a TextEdit".

Cleanup

-C, ——-clean

Option to remove any generated files. Removes files with any of the following suffix: _out .txt (power
flow report), _out .npy (time domain data), _out.lst (time domain variable list), and _eig.txt
(eigenvalue report).

2.2 Interactive Usage

This section is a tutorial for using ANDES in an interactive environment. All interactive shells are supported,
including Python shell, IPython, Jupyter Notebook and Jupyter Lab. The examples below uses Jupyter
Notebook.

Note: All following blocks starting with >>> are Python code. They should be typed into a Python shell,
IPython or Jupyter Notebook, not a Anaconda Prompt or shell.

16 Chapter 2. Tutorial

ANDES Manual, Release 1.2.7

2.2.1 Jupyter Notebook

Jupyter notebook is a convenient tool to run Python code and present results. Jupyter notebook can be
installed with

conda install jupyter notebook

After the installation, change directory to the folder that you wish to store notebooks, then start the notebook
with

Jjupyter notebook

A browser window should open automatically with the notebook browser loaded. To create a new notebook,
use the "New" button at the top-right corner.

2.2.2 Import

Like other Python libraries, ANDES needs to be imported into an interactive Python environment.

>>> import andes
>>> andes.main.config_logger ()

2.2.3 Verbosity

If you are debugging ANDES, you can enable debug messages with

>>> andes.main.config_logger (stream level=10)

The stream_level uses the same verbosity levels (see Basic Usage) as for the command-line. If not
explicitly enabled, the default level 20 (INFO) will apply.

Warning: The verbosity level can only be set once. To set a different level, restart the Python kernel.

2.2.4 Making a System

Before running studies, a "System" object needs to be create to hold the system data. The System object
can be created by passing the path to the case file the entrypoint function. For example, to run the file
kundur_full.x1lsx in the same directory as the notebook, use

>>> ss = andes.run('kundur_ full.xlsx')

This function will parse the input file, run the power flow, and return the system as an object. Outputs will
look like

2.2. Interactive Usage 17

ANDES Manual, Release 1.2.7

Parsing input file </Users/user/notebooks/kundur/kundur_full.xlsx>
Input file kundur_full.xlsx parsed in 0.4172 second.
—> Power flow calculation with Newton Raphson method:

0: |F(x)]| = 14.9283
1: |F(x)]| = 3.60859
2: |F(x)| = 0.170093
3: |F(x)| = 0.00203827
4: |[F(x)| = 3.76414e-07

Converged in 5 iterations in 0.0222 second.
Report saved to </Users/user/notebooks/kundur_full_out.txt> in 0.0015 second.
—-> Single process finished in 0.4677 second.

In this example, ss is an instance of andes . System. It contains member attributes for models, routines,
and numerical DAE.

Naming convention for the Sy stem attributes are as follows
* Model attributes share the same name as class names. For example, ss.Bus is the Bus instance.

* Routine attributes share the same name as class names. For example, ss.PFlow and ss.TDS are
the routine instances.

¢ The numerical DAE instance is in lower case ss . dae.

To work with PSS/E inputs, refer to notebook Example 2.
Output path
By default, outputs will be saved to the folder where Python is run (or where the notebook is run). In case

you need to organize outputs, a path prefix can be passed to andes. run () through output_path. For
example,

>>> ss = andes.run('kundur_full.xlsx', output_path='outputs/")

will put outputs into folder output s relative to the current path. You can also supply an absolute path to
output_path.

No output

Outputs can be disabled by passing output_path=True to andes.run (). This is useful when one
wants to test code without looking at results. For example, do

>>> ss = andes.run('kundur_full.xlsx', no_output=True)

2.2.5 Inspecting Parameter
DataFrame

Parameters for the loaded system can be easily inspected in Jupyter Notebook using Pandas.

18 Chapter 2. Tutorial

https://github.com/cuihantao/andes/blob/master/examples/2.%20inspect_data.ipynb

ANDES Manual, Release 1.2.7

Input parameters for each model instance is returned by the as_df () function. For example, to view the
input parameters for Bus, use

>>> ss.Bus.as_df ()

A table will be printed with the columns being each parameter and the rows being Bus instances. Parameter
in the table is the same as the input file without per-unit conversion.

Parameters have been converted to per unit values under system base. To view the per unit values, use the
as_df_in () attribute. For example, to view the system-base per unit value of GENROU, use

>>> 355 .GENROU.as_df_in ()

Dict

In case you need the parameters in dict, use as_dict (). Values returned by as_dict () are system-
base per unit values. To retrieve the input data, use as_dict (vin=True).

For example, to retrieve the original input data of GENROU’s, use

>>> s5s5.GENROU.as_dict (vin=True)

2.2.6 Running Studies

Three routines are currently supported: PFlow, TDS and EIG. Each routine provides a run () method to
execute. The System instance contains member attributes having the same names. For example, to run the
time-domain simulation for ss, use

>>> ss.TDS.run ()

2.2.7 Checking Exit Code

andes . System contains field exit_code for checking if error occurred in run time. A normal comple-
tion without error should always have exit_code == 0. One should read output messages carefully and
check the exit code, which is particularly useful for batch simulations.

Error may occur in any phase - data parsing, power flow, or simulation. To diagnose, split the simulation
steps and check the outputs from each one.

2.2.8 Plotting TDS Results

TDS comes with a plotting utility for interactive usage. After running the simulation, a plotter attributed
will be created for TDS. To use the plotter, provide the attribute instance of the variable to plot. For example,
to plot all the generator speed, use

2.2. Interactive Usage 19

ANDES Manual, Release 1.2.7

>>> ss.TDS.plotter.plot (ss.GENROU.omega)

Note: If you see the error
AttributeError: ’NoneType’ object has no attribute ’plot’

You will need to manually load plotter with

>>> ss.TDS.load_plotter ()

Optional indices is accepted to choose the specific elements to plot. It can be passed as a tuple to the a
argument

>>> ss.TDS.plotter.plot (ss.GENROU.omega, a=(0,))

In the above example, the speed of the "zero-th" generator will be plotted.

Scaling

A lambda function can be passed to argument ycalc to scale the values. This is useful to convert a per-unit
variable to nominal. For example, to plot generator speed in Hertz, use

>>> ss.TIDS.plotter.plot (ss.GENROU.omega, a=(0,),
ycalc=lambda x: 60xx,

)

Formatting

A few formatting arguments are supported:
* grid = True to turn on grid display
* greyscale = True to switch to greyscale

* ylabel takes a string for the y-axis label

2.2.9 Extracting Data
One can extract data from ANDES for custom plotting. Variable names can be extracted from the following
fields of ss.dae:
Un-formatted names (non-LaTeX):
e x_name: state variable names
* y_name: algebraic variable names

* xy_name: state variable names followed by algebraic ones

20 Chapter 2. Tutorial

ANDES Manual, Release 1.2.7

LaTeX-formatted names:
e x_tex_name: state variable names
* y_tex_name: algebraic variable names
* xy_tex_name: state variable names followed by algebraic ones

These lists only contain the variable names used in the current analysis routine. If you only ran power flow,
ss.dae.y_name will only contain the power flow algebraic variables, and ss.dae . x_name will likely
be empty. After initializing time-domain simulation, these lists will be extended to include all variables used
by TDS.

In case you want to extract the discontinuous flags from TDS, you can set store_z to 1 in the config file
under section [TDS]. When enabled, discontinuous flag names will be populated at

* ss.dae.z_name: discontinuous flag names
* ss.dae.z_tex_name: LaTeX-formatted discontinuous flag names

If not enabled, both lists will be empty.

Power flow solutions

The full power flow solutions are stored at ss.dae . xy after running power flow (and before initializing
dynamic models). You can extract values from ss . dae . xy, which corresponds to the names in ss . dae.
xy_name or ss.dae.xy_tex_name.

If you want to extract variables from a particular model, for example, bus voltages, you can directly access
the v field of that variable

>>> import numpy as np
>>> voltages = np.array(ss.Bus.v.v)

which stores a copy of the bus voltage values. Note that the first v is the voltage variable of Bus, and
the second v stands for value. It is important to make a copy by using np.array () to avoid accidental
changes to the solutions.

If you want to extract bus voltage phase angles, do

>>> angle = np.array(ss.Bus.a.v)

where a is the field name for voltage angle.

To find out names of variables in a model, refer to andes_doc.

Time-domain data
Time-domain simulation data will be ready when simulation completes. It is stored in ss.dae. ts, which
has the following fields:

* txyz: atwo-dimensional array. The first column is time stamps, and the following are variables.
Each row contains all variables for that time step.

2.2. Interactive Usage 21

ANDES Manual, Release 1.2.7

* t: all time stamps.

* x: all state variables (one column per variable).

 y: all algebraic variables (one column per variable).

* z: all discontinuous flags (if enabled, one column per flag).

If you want the output in pandas DataFrame, call

ss.dae.ts.unpack (df=True)

Dataframes are stored in the following fields of ss.dae.ts:
» df: dataframe for states and algebraic variables
* df_z: dataframe for discontinuous flags (if enabled)

For both dataframes, time is the index column, and each column correspond to one variable.

2.2.10 Pretty Print of Equations

Each ANDES models offers pretty print of KIEX -formatted equations in the jupyter notebook environment.

To use this feature, symbolic equations need to be generated in the current session using

import andes
ss = andes.System/()
ss.prepare ()

Or, more concisely, one can do

import andes
ss = andes.prepare ()

This process may take a few minutes to complete. To save time, you can selectively generate it only for
interested models. For example, to generate for the classical generator model GENCLS, do

import andes
ss = andes.System/()
ss.GENROU.prepare ()

Once done, equations can be viewed by accessing ss.<ModelName>.syms.<PrintName>, where
<ModelName> is the model name, and <PrintName> is the equation or Jacobian name.

Note: Pretty print only works for the particular Sy stem instance whose prepare () method is called. In
the above example, pretty print only works for ss after calling prepare ().

Supported equation names include the following:
e xy: variables in the order of State, ExtState, Algeb and ExtAlgeb

» f: the right-hand side of differential equations 7Tx = f

22 Chapter 2. Tutorial

ANDES Manual, Release 1.2.7

* g: implicit algebraic equations 0 = g

* df: derivatives of £ over all variables xy
* dg: derivatives of g over all variables xy
* s: the value equations for ConstService

For example, to print the algebraic equations of model GENCLS, one can use ss.GENCLS. syms.g.

2.2.11 Finding Help
General help

To find help on a Python class, method, or function, use the built-in help () function. For example, to
check how the get method of GENROU should be called, do

help (ss.GENROU.get)

In Jupyter notebook, this can be simplified into ?ss . GENROU.get or ss.GENROU.get?.

Model docs

Model docs can be shown by printing the return of doc () . For example, to check the docs of GENCLS, do

print (ss.GENCLS.doc ())

It is the same as calling andes doc GENCLS from the command line.

2.3 Notebook Examples

Check out more examples in Jupyter Notebook in the examples folder of the repository at here. You can run
the examples in a live Jupyter Notebook online using Binder.

2.4 1/0 Formats

2.4.1 Input Formats

ANDES currently supports the following input formats:
¢ ANDES Excel (.xIsx)
* PSS/E RAW (.raw) and DYR (.dyr)
* MATPOWER (.m)

2.3. Notebook Examples 23

https://github.com/cuihantao/andes/tree/master/examples
https://mybinder.org/v2/gh/cuihantao/andes/master

ANDES Manual, Release 1.2.7

2.4.2 ANDES xIsx Format

The ANDES xIsx format is a newly introduced format since v0.8.0. This format uses Microsoft Excel for
conveniently viewing and editing model parameters. You can use LibreOffice or WPS Office alternatively
to Microsoft Excel.

xlsx Format Definition

The ANDES xIsx format contains multiple workbooks (tabs at the bottom). Each workbook contains the
parameters of all instances of the model, whose name is the workbook name. The first row in a worksheet is
used for the names of parameters available to the model. Starting from the second row, each row corresponds
to an instance with the parameters in the corresponding columns. An example of the Bus workbook is shown
in the following.

AutoSave 2 kundur_fault Q

Comments

| owner | e— Bus
Parameters

| vmax | vmin | | xcoord | ycoord | area | zone
1.1 0.9 1 0.570255
2 20 1.1 0.9 0.99761 0.368746
12 20 11 0.9 0.96263 0.185317
11 20 11 0.9 0.81691 0.462359
101 230 1.1 0.9 0.97928 0.480203
102 230 1.1 0.9 0.95796 0.283887
3 230 1.1 0.9 0.9362 0.126901
13 230 11 0.9 0.87904 -0.08059
112 230 11 0.9 0.89054 0.093618
111 230 1.1 0.9 0.82958 0.336601

S WK NV A WNR
©O0oocooooooo
©©0oocoooooo o

[

!

All Bus-Instances

Models (workbooks)

A few columns are used across all models, including uid, idx, name and u.

* uidis an internally generated unique instance index. This column can be left empty if the xIsx file is
being manually created. Exporting the xIsx file with ~——convert will automatically assign the uid.

» idx is the unique instance index for referencing. An unique idx should be provided explicitly for
each instance. Accepted types for 1 dx include numbers and strings without spaces.

e name is the instance name.

* u is the connectivity status of the instance. Accepted values are 0 and 1. Unexpected behaviors may
occur if other numerical values are assigned.

As mentioned above, idx is the unique index for an instance to be referenced. For example, a PQ instance
can reference a Bus instance so that the PQ is connected to the Bus. This is done through providing the idx
of the desired bus as the bus parameter of the PQ.

24 Chapter 2. Tutorial

https://www.libreoffice.org
https://www.wps.com/

ANDES Manual, Release 1.2.7

®O® Autcsave @ A H S @ kundur_fault Q. @v

Home Insert Draw Page Layout Formulas Data Review View 2 Share CJ Comments

po q0 vmax vmin owner
230 11.59 -0.735 11 0.9
230 15.75 -0.899 11 0.9

+
+ 100%

In the example PQ workbook shown above, there are two PQ instances on buses with idx being 7 and 8,
respectively.

Convert to xlIsx

Please refer to the the ——convert command for converting a recognized file to xlIsx. See format converter
for more detail.

Data Consistency

Input data needs to have consistent types for i dx. Both string and numerical types are allowed for idx,
but the original type and the referencing type must be the same. Suppose we have a bus and a connected
PQ. The Bus device may use 1 or '1"' as its 1dx, as long as the PQ device uses the same value for its bus
parameter.

The ANDES xlIsx reader will try to convert data into numerical types when possible. This is especially
relevant when the input idx is string literal of numbers, the exported file will have them converted to
numbers. The conversion does not affect the consistency of data.

Parameter Check

The following parameter checks are applied after converting input values to array:
* Any NaN values will raise a ValueError

 Any inf will be replaced with 108, and —inf will be replaced with —108.

2.4. 1/0 Formats 25

ANDES Manual, Release 1.2.7

2.5 Cheatsheet

A cheatsheet is available for quick lookup of supported commands.

View the PDF version at

https://www.cheatography.com//cuihantao/cheat-sheets/andes-for-power-system-simulation/pdf/

2.6 Make Documentation

The documentation can be made locally into a variety of formats. To make HTML documentation, change

directory to docs, and do

make html

After a minute, HTML documentation will be saved to docs/build/html with the index page being

index.html.

A list of supported formats is as follows. Note that some format require additional compiler or library

html to make standalone HTML files

dirhtml to make HTML files named index.html in directories
singlehtml to make a single large HTML file

pickle to make pickle files

json to make JSON files

htmlhelp to make HTML files and an HTML help project

gthelp to make HTML files and a gthelp project

devhelp to make HTML files and a Devhelp project

epub to make an epub

latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter
latexpdf to make LaTeX and PDF files (default pdflatex)

latexpdfja to make LaTeX files and run them through platex/dvipdfmx
text to make text files

man to make manual pages

texinfo to make Texinfo files

info to make Texinfo files and run them through makeinfo
gettext to make PO message catalogs

changes to make an overview of all changed/added/deprecated items
xml to make Docutils-native XML files

pseudoxml to make pseudoxml-XML files for display purposes
linkcheck to check all external links for integrity

doctest to run all doctests embedded in the documentation (if enabled)
coverage to run coverage check of the documentation (if enabled)
26 Chapter 2. Tutorial

https://www.cheatography.com//cuihantao/cheat-sheets/andes-for-power-system-simulation/pdf/

CHAPTER 3

Modeling Cookbook

This chapter contains advanced topics on modeling and simulation and how they are implemented in AN-
DES. It aims to provide an in-depth explanation of how the ANDES framework is set up for symbolic mod-
eling and numerical simulation. It also provides an example for interested users to implement customized
DAE models.

3.1 System

3.1.1 Overview

System is the top-level class for organizing power system models and orchestrating calculations.

class andes.system.System (case: Optional[str] = None, name: Optional[str] = None,
config_path: Optional[str] = None, default_config: Op-
tional[bool] = False, options: Optional[Dict{KT, VT]] =
None, **kwargs)
System contains models and routines for modeling and simulation.

System contains a several special OrderedDict member attributes for housekeeping. These attributes
include models, groups, routines and calls for loaded models, groups, analysis routines, and generated
numerical function calls, respectively.

Notes

System stores model and routine instances as attributes. Model and routine attribute names are the
same as their class names. For example, Bus is stored at system.Bus, the power flow calculation
routine is at system.PFlow, and the numerical DAE instance is at system.dae. See attributes
for the list of attributes.

27

ANDES Manual, Release 1.2.7

Attributes
dae [andes.variables.dae.DAE] Numerical DAE storage
files [andes.variables.fileman.FileMan] File path storage
config [andes.core.Config] System config storage
models [OrderedDict] model name and instance pairs
groups [OrderedDict] group name and instance pairs

routines [OrderedDict] routine name and instance pairs

Note: andes.System is an alias of andes.system.System.

Dynamic Imports

System dynamically imports groups, models, and routines at creation. To add new models, groups or rou-
tines, edit the corresponding file by adding entries following examples.

andes.system.System.import_models (self)

Import and instantiate models as System member attributes.

Models defined in models/___init__ .py will be instantiated sequentially as attributes with the
same name as the class name. In addition, all models will be stored in dictionary System.models
with model names as keys and the corresponding instances as values.

Examples

system.Bus stores the Bus object, and system.GENCLS stores the classical generator object,

system.models['Bus'] points the same instance as system.Bus.

andes.system.System.import_groups (self)

Import all groups classes defined in devices/group.py.

Groups will be stored as instances with the name as class names. All groups will be stored to dictio-
nary System.groups.

andes.system.System.import_routines (self)

Import routines as defined in routines/__init__ .py.

Routines will be stored as instances with the name as class names. All groups will be stored to
dictionary System.groups.

Examples

System.PFlow is the power flow routine instance, and System.TDS and System.EIG are time-
domain analysis and eigenvalue analysis routines, respectively.

28

Chapter 3. Modeling Cookbook

ANDES Manual, Release 1.2.7

Code Generation

Under the hood, all symbolically defined equations need to be generated into anonymous function calls for
accelerating numerical simulations. This process is automatically invoked for the first time ANDES is run
command line. It takes several seconds up to a minute to finish the generation.

Note: Code generation has been done if one has executed andes, andes selftest, or andes
prepare.

Warning: When models are modified (such as adding new models or changing equation strings),
code generation needs to be executed again for consistency. It can be more conveniently triggered from
command line with andes prepare -i.

andes.system.System.prepare (self, quick=False, incremental=False)
Generate numerical functions from symbolically defined models.

All procedures in this function must be independent of test case.
Parameters

quick [bool, optional] True to skip pretty-print generation to reduce code generation
time.

incremental [bool, optional] True to generate only for modified models, incremen-
tally.

Warning: Generated lambda functions will be serialized to file, but pretty prints (SymPy objects)
can only exist in the System instance on which prepare is called.

Notes

Option incremental compares the mdS checksum of all var and service strings, and only regener-
ate for updated models.

Examples

If one needs to print out LaTeX-formatted equations in a Jupyter Notebook, one need to generate such
equations with

import andes
sys = andes.prepare ()

Alternatively, one can explicitly create a System and generate the code

3.1. System 29

ANDES Manual, Release 1.2.7

import andes
sys = andes.System()
sys.prepare ()

Since the process is slow, generated numerical functions (Python Callable) will be serialized into a file for
future speed up. The package used for serializing/de-serializing numerical calls is di11l. System has a
function called di11 for serializing using the di11 package.

andes.system.System.dill (self)
Serialize generated numerical functions in System.calls with package dill.

The serialized file will be stored to ~/ .andes/calls.pkl, where ~ is the home directory path.

Notes

This function sets dill.settings[recurse’] = True to serialize the function calls recursively.

andes.system.System.undill (self)
Deserialize the function calls from ~/ . andes/calls.pkl withdill.

If no change is made to models, future calls to prepare () can be replaced with undill () for
acceleration.

3.1.2 DAE Storage

System.dae is an instance of the numerical DAE class.

andes.variables.dae .DAE (system)
Class for storing numerical values of the DAE system, including variables, equations and first order

derivatives (Jacobian matrices).

Variable values and equation values are stored as numpy . ndarray, while Jacobians are stored as
kvxopt . spmatrix. The defined arrays and descriptions are as follows:

DAE Array | Description

X Array for state variable values

y Array for algebraic variable values

z Array for 0/1 limiter states (if enabled)

f Array for differential equation derivatives
Tf Left-hand side time constant array for f

g Array for algebraic equation mismatches

The defined scalar member attributes to store array sizes are

Scalar | Description

m The number of algebraic variables/equations
n The number of algebraic variables/equations
0 The number of limiter state flags

30 Chapter 3. Modeling Cookbook

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

ANDES Manual, Release 1.2.7

The derivatives of f and g with respect to x and y are stored in four kvxopt .spmatrix sparse
matrices: fx, fy, gx, and gy, where the first letter is the equation name, and the second letter is the
variable name.

Notes

DAE in ANDES is defined in the form of
Ti = f(x,y)
0=g(z,y)

DAE does not keep track of the association of variable and address. Only a variable instance keeps
track of its addresses.

3.1.3 Model and DAE Values

ANDES uses a decentralized architecture between models and DAE value arrays. In this architecture, vari-
ables are initialized and equations are evaluated inside each model. Then, System provides methods for
collecting initial values and equation values into DAE, as well as copying solved values to each model.

The collection of values from models needs to follow protocols to avoid conflicts. Details are given in the
subsection Variables.

andes.system.System.vars_to_dae (self, model)
Copy variables values from models to System.dae.

This function clears DAE.x and DAE.y and collects values from models.

andes.system.System.vars_to_models (self)
Copy variable values from System.dae to models.

andes.system.System._e_to_dae (self, eq_name: Union[str, Tuple] = (’f’, ’g’))
Helper function for collecting equation values into System.dae.f and System.dae.g.

Parameters

eq_name [’X’ or’y’ or tuple] Equation type name

Matrix Sparsity Patterns

The largest overhead in building and solving nonlinear equations is the building of Jacobian matrices. This
is especially relevant when we use the implicit integration approach which algebraized the differential equa-
tions. Given the unique data structure of power system models, the sparse matrices for Jacobians are built
incrementally, model after model.

There are two common approaches to incrementally build a sparse matrix. The first one is to use simple
in-place add on sparse matrices, such as doing

self.fx += spmatrix(v, i, Jj, (n, n), 'd")

3.1. System 31

ANDES Manual, Release 1.2.7

Although the implementation is simple, it involves creating and discarding temporary objects on the right
hand side and, even worse, changing the sparse pattern of self. fx.

The second approach is to store the rows, columns and values in an array-like object and construct the
Jacobians at the end. This approach is very efficient but has one caveat: it does not allow accessing the
sparse matrix while building.

ANDES uses a pre-allocation approach to avoid the change of sparse patterns by filling values into a known
the sparse matrix pattern matrix. System collects the indices of rows and columns for each Jacobian matrix.
Before in-place additions, ANDES builds a temporary zero-filled spmatrix, to which the actual Jacobian
values are written later. Since these in-place add operations are only modifying existing values, it does not
change the pattern and thus avoids memory copying. In addition, updating sparse matrices can be done with
the exact same code as the first approach.

Still, this approach creates and discards temporary objects. It is however feasible to write a C function
which takes three array-likes and modify the sparse matrices in place. This is feature to be developed, and
our prototype shows a promising acceleration up to 50%.

andes.system.System.store_sparse_pattern (self, models: collections.OrderedDict)
Collect and store the sparsity pattern of Jacobian matrices.

This is a runtime function specific to cases.

Notes

For gy matrix, always make sure the diagonal is reserved. It is a safeguard if the modeling user omitted
the diagonal term in the equations.

3.1.4 Calling Model Methods
System is an orchestrator for calling shared methods of models. These API methods are defined for initial-
ization, equation update, Jacobian update, and discrete flags update.

The following methods take an argument models, which should be an OrderedDict of models with names as
keys and instances as values.

andes.system.System.init (self, models: collections.OrderedDict, routine: str)
Initialize the variables for each of the specified models.

For each model, the initialization procedure is:
* Get values for all ExtService.
 Call the model init() method, which initializes internal variables.
* Copy variables to DAE and then back to the model.

andes.system.System.e_clear (self, models: collections.OrderedDict)
Clear equation arrays in DAE and model variables.

This step must be called before calling f_update or g_update to flush existing values.

32 Chapter 3. Modeling Cookbook

ANDES Manual, Release 1.2.7

andes.system.System.l_update_var (self, models: collections.OrderedDict, niter=None,

err=None)
Update variable-based limiter discrete states by calling 1_update_var of models.

This function is must be called before any equation evaluation.

andes.system.System. f_update (self, models: collections.OrderedDict)
Call the differential equation update method for models in sequence.

Notes
Updated equation values remain in models and have not been collected into DAE at the end of this
step.

andes.system.System.1l_update_eq (self, models: collections.OrderedDict)
Update equation-dependent limiter discrete components by calling 1__check_eqg of models. Force
set equations after evaluating equations.

This function is must be called after differential equation updates.

andes.system.System.g_update (self, models: collections.OrderedDict)
Call the algebraic equation update method for models in sequence.

Notes

Like f_update, updated values have not collected into DAE at the end of the step.

andes.system.System. j_update (self, models: collections.OrderedDict, info=None)
Call the Jacobian update method for models in sequence.

The procedure is - Restore the sparsity pattern with andes.variables.dae.DAE.
restore_sparse () - For each sparse matrix in (fx, fy, gx, gy), evaluate the Jacobian function
calls and add values.

Notes

Updated Jacobians are immediately reflected in the DAE sparse matrices (fx, fy, gx, gy).

3.1.5 Configuration
System, models and routines have a member attribute config for model-specific or routine-specific configu-
rations. System manages all configs, including saving to a config file and loading back.

andes.system.System.get_config (self)
Collect config data from models.

Returns

dict a dict containing the config from devices; class names are keys and configs in a
dict are values.

3.1. System 33

ANDES Manual, Release 1.2.7

andes.system.System.save_config (self, file_path=None, overwrite=False)
Save all system, model, and routine configurations to an rc-formatted file.

Parameters
file_path [str, optional] path to the configuration file default to ~/andes/andes.rc.

overwrite [bool, optional] If file exists, True to overwrite without confirmation. Oth-
erwise prompt for confirmation.

Warning: Saved config is loaded back and populated at system instance creation time. Configs
from the config file takes precedence over default config values.

andes.system.System.load_config (conf _path=None)
Load config from an rc-formatted file.

Parameters

conf_path [None or str] Path to the config file. If is None, the function body will not
run.

Returns

configparse.ConfigParser

Warning: It is important to note that configs from files is passed to model constructors during instan-
tiation. If one needs to modify config for a run, it needs to be done before instantiating System, or
before running andes from command line. Directly modifying Model . config may not take effect
or have side effect as for the current implementation.

3.2 Models

This section introduces the modeling of power system devices. The terminology "model" is used to describe
the mathematical representation of a fype of device, such as synchronous generators or turbine governors.
The terminology "device" is used to describe a particular instance of a model, for example, a specific gener-
ator.

To define a model in ANDES, two classes, Mode1Data and Model need to be utilized. Class ModelData
is used for defining parameters that will be provided from input files. It provides API for adding data from
devices and managing the data. Class Model is used for defining other non-input parameters, service
variables, and DAE variables. It provides API for converting symbolic equations, storing Jacobian patterns,
and updating equations.

3.2.1 Model Data

class andes.core.model .ModelData (*args, three_params=True, **kwargs)
Class for holding parameter data for a model.

34 Chapter 3. Modeling Cookbook

ANDES Manual, Release 1.2.7

This class is designed to hold the parameter data separately from model equations. Models should
inherit this class to define the parameters from input files.

Inherit this class to create the specific class for holding input parameters for a new model. The rec-
ommended name for the derived class is the model name with Data. For example, data for GENCLS
should be named GENCLSData.

Parameters should be definedinthe ___init__ function of the derived class.

Refer to andes. core. param for available parameter types.

Notes
Three default parameters are pre-defined in Mode1Data and will be inherited by all models. They
are

* idx, unique device idx of type andes. core.param.DataParam

* u, connection status of type andes. core.param. NumParam

* name, (device name of type andes. core.param.DataParam

In rare cases one does not want to define these three parameters, one can pass three_params=True to
the constructor of Mode1Data.

Examples

If we want to build a class PQData (for static PQ load) with three parameters, Vn, pO and g0, we can
use the following

from andes.core.model import ModelData, Model
from andes.core.param import IdxParam, NumParam

class PQData (ModelData) :

super () .__init__ ()

self.Vn = NumParam(default=110,
info="AC voltage rating",
unit='kV', non_zero=True,
tex_name=r'V_n")

self.p0 = NumParam(default=0,
info='active power load in system base',
tex_name=r'p_0', unit='p.u.")

self.g0 = NumParam (default=0,
info='reactive power load in system base',
tex_name=r'q 0', unit='p.u.")

In this example, all the three parameters are defined as andes. core.param. NumParam. In the
full PQData class, other types of parameters also exist. For example, to store the idx of owner,
PQOData uses

self.owner = IdxParam(model='Owner', info="owner idx")

3.2. Models 35

ANDES Manual, Release 1.2.7

Attributes
cache A cache instance for different views of the internal data.

flags [dict] Flags to control the routine and functions that get called. If the model is
using user-defined numerical calls, set f_num, g_num and j_num properly.

Cache
ModelData uses a lightweight class andes . core.model . ModelCache for caching its data as a dictio-
nary or a pandas DataFrame. Four attributes are defined in ModelData.cache:
* dict: all data in a dictionary with the parameter names as keys and v values as arrays.
* dict_in: the same as dict except that the values are from v_in, the original input.
* df: all data in a pandas DataFrame.
* df _in: the same as df except that the values are from v_in.
Other attributes can be added by registering with cache.add_callback.

andes.core.model .ModelCache.add_callback (self, name: str, callback)
Add a cache attribute and a callback function for updating the attribute.

Parameters
name [str] name of the cached function return value

callback [callable] callback function for updating the cached attribute

Define Voltage Ratings
If a model is connected to an AC Bus or a DC Node, namely, if bus, busl, node or nodel exists as
parameter, it must provide the corresponding parameter, Vn, Vnl, Vdcn or Vdcnl, for rated voltages.

Controllers not connected to Bus or Node will have its rated voltages omitted and thus Vb = vn = 1,
unless one uses andes. core.param.ExtParam to retrieve the bus/node values.

As a rule of thumb, controllers not directly connected to the network shall use system-base per unit for
voltage and current parameters. Controllers (such as a turbine governor) may inherit rated power from
controlled models and thus power parameters will be converted consistently.

3.2.2 Define a DAE Model

class andes.core.model .Model (system=None, config=None)
Base class for power system DAE models.

After subclassing ModelData, subclass Model‘ to complete a DAE model. Subclasses of Model de-
fines DAE variables, services, and other types of parameters, in the constructor __init_ .

36 Chapter 3. Modeling Cookbook

ANDES Manual, Release 1.2.7

Notes

To modify parameters or services use set (), which writes directly to the given attribute, or
alter (), which converts parameters to system base like that for input data.

Examples

Take the static PQ as an example, the subclass of Model, PQ, should looks like

class PQ (PQData, Model) :

def _ init__ (self, system, confiqg):
PQData.__ _init__ (self)
Model._ _init__ (self, system, config)

Since PQ is calling the base class constructors, it is meant to be the final class and not further derived.
It inherits from PQData and Model and must call constructors in the order of PQData and Model. If
the derived class of Model needs to be further derived, it should only derive from Model and use a
name ending with Base. See andes .models.synchronous .GENBASE.

Next, in PQ.__init__, set proper flags to indicate the routines in which the model will be used

self.flags.update({'pflow': True})

Currently, flags pflow and tds are supported. Both are False by default, meaning the model is neither
used in power flow nor time-domain simulation. A very common pitfall is forgetting to set the flag.

Next, the group name can be provided. A group is a collection of models with common parameters
and variables. Devices idx of all models in the same group must be unique. To provide a group name,
use

self.group = 'StaticLoad'

The group name must be an existing class name in andes.models.group. The model will be
added to the specified group and subject to the variable and parameter policy of the group. If not
provided with a group class name, the model will be placed in the Undefined group.

Next, additional configuration flags can be added. Configuration flags for models are load-time vari-
ables specifying the behavior of a model. It can be exported to an andes.rc file and automatically
loaded when creating the System. Configuration flags can be used in equation strings, as long as they
are numerical values. To add config flags, use

self.config.add (OrderedDict ((('pg2z', 1),)))

It is recommended to use OrderedDict instead of dict, although the syntax is verbose. Note that
booleans should be provided as integers (1, or 0), since True or False is interpreted as a string when
loaded from the rc file and will cause an error.

Next, it’s time for variables and equations! The PQ class does not have internal variables itself. It
uses its bus parameter to fetch the corresponding a and v variables of buses. Equation wise, it imposes
an active power and a reactive power load equation.

3.2. Models 37

ANDES Manual, Release 1.2.7

To define external variables from Bus, use

self.a = ExtAlgeb (model='Bus', src='a',
indexer=self.bus, tex_name=r'\theta')

ExtAlgeb (model="'Bus', src='v',
indexer=self.bus, tex_name=r'V')

self.v

Refer to the subsection Variables for more details.

The simplest PQ model will impose constant P and Q, coded as

self.a.e_str = "u x p"
self.v.e_str = "u % g"

where the e_str attribute is the equation string attribute. u is the connectivity status. Any parameter,
config, service or variables can be used in equation strings.

Three additional scalars can be used in equations: - dae_t for the current simulation time can be
used if the model has flag tds. - sys_f for system frequency (from system.config.freq). -
sys_mva for system base mva (from system.config.mva).

The above example is overly simplified. Our PQ model wants a feature to switch itself to a constant
impedance if the voltage is out of the range (vmin, vimax). To implement this, we need to introduce a
discrete component called Limiter, which yields three arrays of binary flags, zi, z/, and zu indicating
in range, below lower limit, and above upper limit, respectively.

First, create an attribute vemp as a Limiter instance

self.vcmp = Limiter (u=self.v, lower=self.vmin, upper=self.vmax,
enable=self.config.pg2z)

where self.config.pq2z is a flag to turn this feature on or off. After this line, we can use vemp_zi,
vemp_zI, and vemp_zu in other equation strings.

self.a.e_str "u * (p0 * vemp_zi + " \
"0 * vemp_zl x (v x* 2 / vmin xx 2) + " \

"p0 * vcmp_zu x (Vv x*x 2 / vmax *x 2))"

self.v.e_str = "u * (g0 % vecmp_zi + " \
"q0 * vemp_zl x (v ** 2 / vmin xx 2) + "\

"q0 * vcmp_zu x (v x* 2 / vmax *x 2))"

Note that PQ.a.e_str can use the three variables from vemp even before defining PQ.vemp, as long as
PQ.vemp is defined, because vemp_zi is just a string literal in e_str.

The two equations above implements a piecewise power injection equation. It selects the original
power demand if within range, and uses the calculated power when out of range.

Finally, to let ANDES pick up the model, the model name needs to be added to models/__init__.py.
Follow the examples in the OrderedDict, where the key is the file name, and the value is the class
name.

Attributes

38 Chapter 3. Modeling Cookbook

ANDES Manual, Release 1.2.7

num_params [OrderedDict] {name: instance} of numerical parameters, including
internal and external ones

3.2.3 Dynamicity Under the Hood

The magic for automatic creation of variables are all hidden in andes.core.model.Model.
__setattr__ (), and the code is incredible simple. It sets the name, tex_name, and owner model of
the attribute instance and, more importantly, does the book keeping. In particular, when the attribute is
a andes.core.block.Block subclass, __setattr__ captures the exported instances, recursively,
and prepends the block name to exported ones. All these convenience owe to the dynamic feature of Python.

During the code generation phase, the symbols are created by checking the book-keeping attributes, such as
states, algebs, and attributes in Model.cache.

In the numerical evaluation phase, Model provides a method, andes.core.model.get_inputs (), to
collect the variable value arrays in a dictionary, which can be effortlessly passed as arguments to numerical
functions.

Commonly Used Attributes in Models
The following Mode1 attributes are commonly used for debugging. If the attribute is an OrderedDict, the
keys are attribute names in str, and corresponding values are the instances.

* params and params_ext, two OrderedDict for internal (both numerical and non-numerical) and
external parameters, respectively.

* num_params for numerical parameters, both internal and external.

* states and algebs, two OrderedDict for state variables and algebraic variables, respectively.
* states_ext and algebs_ext, two OrderedDict for external states and algebraics.

* discrete, an OrderedDict for discrete components.

e blocks, an OrderedDict for blocks.

* services, an OrderedDict for services with v_str.

* services_ext, an OrderedDict for externally retrieved services.

Attributes in Model.cache
Attributes in Model.cache are additional book-keeping structures for variables, parameters and services. The
following attributes are defined.

* all_vars: all the variables.

* all_vars_names, a list of all variable names.

* all_params, all parameters.

* all_params_names, a list of all parameter names.

3.2. Models 39

ANDES Manual, Release 1.2.7

* algebs_and_ext, an OrderedDict of internal and external algebraic variables.

e states_and_ext, an OrderedDict of internal and external differential variables.
e services_and_ext, an OrderedDict of internal and external service variables.
* vars_int, an OrderedDict of all internal variables, states and then algebs.

* vars_ext, an OrderedDict of all external variables, states and then algebs.

3.2.4 Equation Generation

Model. syms, an instance of SymProcessor, handles the symbolic to numeric generation when called.
The equation generation is a multi-step process with symbol preparation, equation generation, Jacobian
generation, initializer generation, and pretty print generation.

class andes.core.model.SymProcessor (parent)
A helper class for symbolic processing and code generation.

Parameters
parent [Model] The Model instance to document
Attributes

Xy [sympy.Matrix] variables pretty print in the order of State, ExtState, Algeb, Ex-
tAlgeb

f [sympy.Matrix] differential equations pretty print
g [sympy.Matrix] algebraic equations pretty print
df [sympy.SparseMatrix] df /d (xy) pretty print

dg [sympy.SparseMatrix] dg /d (xy) pretty print

inputs_dict [OrderedDict] All possible symbols in equations, including variables,
parameters, discrete flags, and config flags. It has the same variables as what
get_inputs () returns.

vars_dict [OrderedDict] variable-only symbols, which are useful when getting the
Jacobian matrices.

non_vars_dict [OrderedDict] symbols in input_syms but not in var_syms.

generate_init ()
Generate lambda functions for initial values.

generate_jacobians ()
Generate Jacobians and store to corresponding triplets.

The internal indices of equations and variables are stored, alongside the lambda functions.

For example, dg/dy is a sparse matrix whose elements are (row, col, wval), where row
and col are the internal indices, and val is the numerical lambda function. They will be stored
to

40 Chapter 3. Modeling Cookbook

ANDES Manual, Release 1.2.7

row -> self.calls._igy col -> self.calls._jgy val -> self.calls._vgy

generate_symbols ()
Generate symbols for symbolic equation generations.

This function should run before other generate equations.
Attributes

inputs_dict [OrderedDict] name-symbol pair of all parameters, variables and con-
figs

vars_dict [OrderedDict] name-symbol pair of all variables, in the order of
(states_and_ext + algebs_and_ext)

non_vars_dict [OrderedDict] name-symbol pair of all non-variables, namely, (in-
puts_dict - vars_dict)

Next, function generate_equation converts each DAE equation set to one numerical function calls
and store it in Model.calls. The attributes for differential equation set and algebraic equation set are
f and g. Differently, service variables will be generated one by one and store in an OrderedDict in
Model.calls.s.

3.2.5 Jacobian Storage

Abstract Jacobian Storage

Using the . jacobian method on sympy .Matrix, the symbolic Jacobians can be easily obtained. The
complexity lies in the storage of the Jacobian elements. Observed that the Jacobian equation generation
happens before any system is loaded, thus only the variable indices in the variable array is available. For
each non-zero item in each Jacobian matrix, ANDES stores the equation index, variable index, and the
Jacobian value (either a constant number or a callable function returning an array).

Note that, again, a non-zero entry in a Jacobian matrix can be either a constant or an expression. For
efficiency, constant numbers and lambdified callables are stored separately. Constant numbers, therefore,
can be loaded into the sparse matrix pattern when a particular system is given.

Warning: Data structure for the Jacobian storage has changed. Pending documentation update. Please
check andes.core.common.JacTriplet class for more details.

The triplets, the equation (row) index, variable (column) index, and values (constant numbers or callable) are
stored in Mode1 attributes with the name of _{1i, J, v}{Jacobian Name}{c or None}, where
{i, 3, v} isasingle character for row, column or value, { Jacobian Name} is a two-character Jaco-
bian name chosen from £x, fy, gx, and gy,and {c or None} is either character c or no charac-
ter, indicating whether it corresponds to the constants or non-constants in the Jacobian.

For example, the triplets for the constants in Jacobian gy are stored in _igyc, _jgyc, and _vgyc.

In terms of the non-constant entries in Jacobians, the callable functions are stored in the corresponding
_v{Jacobian Name} array. Note the differences between, for example, _vgy an _vgyc: _vgy is a
list of callables, while _vgyc is a list of constant numbers.

3.2. Models M

ANDES Manual, Release 1.2.7

Concrete Jacobian Storage

When a specific system is loaded and the addresses are assigned to variables, the abstract Jacobian triplets,
more specifically, the rows and columns, are replaced with the array of addresses. The new addresses
and values will be stored in Model attributes with the names {i, J, v} {Jacobian Name}{c or
None}. Note that there is no underscore for the concrete Jacobian triplets.

For example, if model PV has a list of variables [p, g, a, v] . The equation associated with pis — u
» pO0, and the equation associated with gisu * (v0 - wv). Therefore, the derivative of equation v0 -
v over v is —u. Note that u is unknown at generation time, thus the value is NOT a constant and should to

g0 vgy.

The values in _igy, _jgy and _vgy contains, respectively, 1, 3, and a lambda function which returns —u.

When a specific system is loaded, for example, a 5-bus system, the addresses for the g and v are [11,
13, 15,and [5, 7, 9].PV.igyandPV. jgy will thus query the corresponding address list based on
PV._igyand PV._jgyandstore [11, 13, 15,and [5, 7, 9].

3.2.6 Initialization
Value providers such as services and DAE variables need to be initialized. Services are initialized before
any DAE variable. Both Services and DAE Variables are initialized sequentially in the order of declaration.

Each Service, in addition to the standard v_str for symbolic initialization, provides a v_numeric hook
for specifying a custom function for initialization. Custom initialization functions for DAE variables, are
lumped in a single function in Model.v_numeric.

ANDES has an experimental Newton-Krylov method based iterative initialization. All DAE variables with
v_iter will be initialized using the iterative approach

3.2.7 Additional Numerical Equations

Addition numerical equations are allowed to complete the "hybrid symbolic-numeric" framework. Numer-
ical function calls are useful when the model DAE is non-standard or hard to be generalized. Since the
symbolic-to-numeric generation is an additional layer on top of the numerical simulation, it is fundamen-
tally the same as user-provided numerical function calls.

ANDES provides the following hook functions in each Mode1 subclass for custom numerical functions:
e v_numeric: custom initialization function
e s_numeric: custom service value function
* g_numeric: custom algebraic equations; update the e of the corresponding variable.
* £ _numeric: custom differential equations; update the e of the corresponding variable.
* j_numeric: custom Jacobian equations; the function should append to _i, _J and _ v structures.

For most models, numerical function calls are unnecessary and not recommended as it increases code com-
plexity. However, when the data structure or the DAE are difficult to generalize in the symbolic framework,
the numerical equations can be used.

42 Chapter 3. Modeling Cookbook

ANDES Manual, Release 1.2.7

For interested readers, see the COI symbolic implementation which calculated the center-of-inertia speed
of generators. The COT could have been implemented numerically with for loops instead of NumReduce,
NumRepeat and external variables.

3.3 Atom Types

ANDES contains three types of atom classes for building DAE models. These types are parameter, variable
and service.

3.3.1 Value Provider

Before addressing specific atom classes, the terminology v-provider, and e-provider are discussed. A value
provider class (or v-provider for short) references any class with a member attribute named v, which should
be a list or a 1-dimensional array of values. For example, all parameter classes are v-providers, since a
parameter class should provide values for that parameter.

Note: In fact, all types of atom classes are v-providers, meaning that an instance of an atom class must
contain values.

The values in the v attribute of a particular instance are values that will substitute the instance for computa-
tion. If in a model, one has a parameter

self.v0 NumParam ()
self.b = NumParam/()

where self.v0.v = np.array([1., 1.05, 1.1]
and self.b.v np.array([10., 10., 10.]

Later, this parameter is used in an equation, such as

self.v = ExtAlgeb (model='Bus', src='v"',
indexer=self.bus,
e_str='v0 *%x2 * b'")

While computing vO ** 2 * b, v0 and b will be substituted with the values in self.v0.v and self.b.v.

Sharing this interface v allows interoperability among parameters and variables and services. In the above
example, if one defines v0 as a ConstService instance, such as

self.v0 = ConstService(v_str='1.0")

Calculations will still work without modification.

3.3. Atom Types 43

ANDES Manual, Release 1.2.7

3.3.2 Equation Provider

Similarly, an equation provider class (or e-provider) references any class with a member attribute named e,
which should be a 1-dimensional array of values. The values in the e array are the results from the equation
and will be summed to the numerical DAE at the addresses specified by the attribute a.

Note: Currently, only variables are e-provider types.

If a model has an external variable that links to Bus.v (voltage), such as

self.v = ExtAlgeb (model='Bus', src='v',
indexer=self.bus,
e_str="v0 x*x2 % b')

The addresses of the corresponding voltage variables will be retrieved into self.a, and the equation evaluation
results will be stored in self.v.e

3.4 Parameters

3.4.1 Background

Parameter is a type of building atom for DAE models. Most parameters are read directly from an input file
and passed to equation, and other parameters can be calculated from existing parameters.

The base class for parameters in ANDES is BaseParam, which defines interfaces for adding values and
checking the number of values. BaseParam has its values stored in a plain list, the member attribute v.
Subclasses such as NumParam stores values using a NumPy ndarray.

An overview of supported parameters is given below.

Subclasses | Description

DataParam An alias of BaseParam. Can be used for any non-numerical parameters.
NumParam | The numerical parameter type. Used for all parameters in equations
IdxParam The parameter type for storing idx into other models

ExtParam Externally defined parameter

TimerParam | Parameter for storing the action time of events

3.4.2 Data Parameters

class andes.core.param.BaseParam (default: Union[float, str, int, None] = None, name:
Optional[str] = None, tex_name: Optional[str]
= None, info: Optional[str] = None, unit: Op-
tional[str] = None, mandatory: bool = False, ex-
port: bool = True, iconvert: Optional[Callable] =

None, oconvert: Optional[Callable] = None)
The base parameter class.

44 Chapter 3. Modeling Cookbook

ANDES Manual, Release 1.2.7

This class provides the basic data structure and interfaces for all types of parameters. Parameters are
from input files and in general constant once initialized.

Subclasses should overload the n() method for the total count of elements in the value array.
Parameters
default [str or float, optional] The default value of this parameter if None is provided

name [str, optional] Parameter name. If not provided, it will be automatically set to
the attribute name defined in the owner model.

tex_name [str, optional] LaTeX-formatted parameter name. If not provided,
tex_name will be assigned the same as name.

info [str, optional] Descriptive information of parameter
mandatory [bool] True if this parameter is mandatory

export [bool] True if the parameter will be exported when dumping data into files.
True for most parameters. False for BackRef.

Warning: The most distinct feature of BaseParam, DataParam and IdxParam is that values are
stored in a list without conversion to array. BaseParam, DataParam or IdxParam are not allowed
in equations.

Attributes

v [list] A list holding all the values. The BaseParam class does not convert the v
attribute into NumPy arrays.

property [dict] A dict containing the truth values of the model properties.

class andes.core.param.DataParam (default: Union[float, str, int, None] = None, name:
Optional[str] = None, tex_name: Optional[str]
= None, info: Optional[str] = None, unit: Op-
tional[str] = None, mandatory: bool = False, ex-
port: bool = True, iconvert: Optional[Callable] =

None, oconvert: Optional[Callable] = None)
An alias of the BaseParam class.

This class is used for string parameters or non-computational numerical parameters. This class does
not provide a fo_array method. All input values will be stored in v as a list.

See also:

andes.core.param. BaseParam Base parameter class

3.4. Parameters 45

ANDES Manual, Release 1.2.7

class andes.core.param.IdxParam (default: Union[float, str, int, None] = None, name:

Optional[str] = None, tex_name: Optional[str] =
None, info: Optional[str] = None, unit: Op-
tional[str] = None, mandatory: bool = False,
unique: bool = False, export: bool = True, model:
Optional[str] = None, iconvert: Optional[Callable]

= None, oconvert: Optional[Callable] = None)
An alias of BaseParam with an additional storage of the owner model name

This class is intended for storing idx into other models. It can be used in the future for data consistency
check.

Notes

This will be useful when, for example, one connects two TGs to one SynGen.

Examples

A PQ model connected to Bus model will have the following code

class PQModel(...):
def _ init_ (...):

self.bus = IdxParam(model='Bus')

3.4.3 Numeric Parameters

class andes.core.param.NumParam (default: Union[float, str, Callable, None] = None,

name: Optional[str] = None, tex_name: Op-
tional[str] = None, info: Optional[str] = None, unit:
Optional[str] = None, vrange: Union[List[T], Tu-
ple, None] = None, vtype: Optional[Type[CT _co]]
= <class ’float’>, iconvert: Optional[Callable]
= None, oconvert: Optional[Callable] = None,
non_zero: bool = False, non_positive: bool = False,
non_negative: bool = False, mandatory: bool =
False, power: bool = False, ipower: bool = False,
voltage: bool = False, current: bool = False, z: bool
= False, y: bool = False, r: bool = False, g: bool =
False, dc_voltage: bool = False, dc_current: bool =

False, export: bool = True)
A computational numerical parameter.

Parameters defined using this class will have their v field converted to a NumPy array after adding.

The original input values will be copied to vin, and the system-base per-unit conversion coefficients
(through multiplication) will be stored in pu_coeff.

46

Chapter 3. Modeling Cookbook

ANDES Manual, Release 1.2.7

Parameters

default [str or float, optional] The default value of this parameter if no value is pro-
vided

name [str, optional] Name of this parameter. If not provided, name will be set to the
attribute name of the owner model.

tex_name [str, optional] LaTeX-formatted parameter name. If not provided,
tex_name will be assigned the same as name.

info [str, optional] A description of this parameter

mandatory [bool] True if this parameter is mandatory

unit [str, optional] Unit of the parameter

vrange [list, tuple, optional] Typical value range

vtype [type, optional] Type of the v field. The default is f1oat.
Other Parameters

Sn [str] Name of the parameter for the device base power.

Vn [str] Name of the parameter for the device base voltage.

non_zero [bool] True if this parameter must be non-zero. non_zero can be combined
with non_positive or non_negative.

non_positive [bool] True if this parameter must be non-positive.
non_negative [bool] True if this parameter must be non-negative.
mandatory [bool] True if this parameter must not be None.

power [bool] True if this parameter is a power per-unit quantity under the device
base.

iconvert [callable] Callable to convert input data from excel or others to the internal
v field.

oconvert [callable] Callable to convert input data from internal type to a serializable
type.

ipower [bool] True if this parameter is an inverse-power per-unit quantity under the
device base.

voltage [bool] True if the parameter is a voltage pu quantity under the device base.
current [bool] True if the parameter is a current pu quantity under the device base.
z [bool] True if the parameter is an AC impedance pu quantity under the device base.
y [bool] True if the parameter is an AC admittance pu quantity under the device base.
r [bool] True if the parameter is a DC resistance pu quantity under the device base.

g [bool] True if the parameter is a DC conductance pu quantity under the device base.

3.4. Parameters 47

ANDES Manual, Release 1.2.7

dc_current [bool] True if the parameter is a DC current pu quantity under device
base.

dc_voltage [bool] True if the parameter is a DC voltage pu quantity under device
base.

3.4.4 External Parameters

class andes.core.param.ExtParam (model: str, src: str, indexer=None, vtype=<class

float’>, allow_none=False, default=0.0, **kwargs)
A parameter whose values are retrieved from an external model or group.

Parameters
model [str] Name of the model or group providing the original parameter
src [str] The source parameter name

indexer [BaseParam] A parameter defined in the model defining this ExtParam in-
stance. indexer.v should contain indices into model.src.v. If is None, the source
parameter values will be fully copied. If model is a group name, the indexer can-
not be None.

Attributes

parent_model [Model] The parent model providing the original parameter.

3.4.5 Timer Parameter

class andes.core.param.TimerParam (callback: Optional[Callable] = None, default:

Union[float, str, Callable, None] = None, name:
Optional[str] = None, tex_name: Optional[str]
= None, info: Optional[str] = None, unit: Op-
tional[str] = None, non_zero: bool = False,

mandatory: bool = False, export: bool = True)
A parameter whose values are event occurrence times during the simulation.

The constructor takes an additional Callable self.callback for the action of the event. TimerParam has
a default value of -1, meaning deactivated.

Examples

A connectivity status toggler class Toggler takes a parameter ¢ for the toggle time. Inside Toggler.
__init_ , one would have

self.t = TimerParam()

The Toggler class also needs to define a method for togging the connectivity status

48

Chapter 3. Modeling Cookbook

ANDES Manual, Release 1.2.7

def _u_switch(self, is_time: np.ndarray) :
action = False
for i in range(self.n):
if is_time[i] and (self.u.v[i] == 1):
instance = self.system._ dict_[self.model.v[i]]
get the original status and flip the value
u0 = instance.get (src='u', attr='v', idx=self.dev.v[i])
instance.set (src="u',
attr="'v"',
idx=self.dev.v[i],
value=1-u0)
action = True
return action

Finally, in Toggler.__init__, assign the function as the callback for self.t

self.t.callback = self._u_switch

3.5 Variables

DAE Variables, or variables for short, are unknowns to be solved using numerical or analytical methods.
A variable stores values, equation values, and addresses in the DAE array. The base class for variables is
BaseVar. In this subsection, BaseVar is used to represent any subclass of VarBase list in the table below.

Class Description
State A state variable and associated diff. equation Tz = f
Algeb An algebraic variable and an associated algebraic equation)0 = g

ExtState | An external state variable and part of the differential equation (uncommon)
ExtAlgeb | An external algebraic variable and part of the algebraic equation

BaseVar has two types: the differential variable type State and the algebraic variable type Algeb. State
variables are described by differential equations, whereas algebraic variables are described by algebraic
equations. State variables can only change continuously, while algebraic variables can be discontinuous.

Based on the model the variable is defined, variables can be internal or external. Most variables are internal
and only appear in equations in the same model. Some models have "public" variables that can be accessed
by other models. For example, a Bus defines v for the voltage magnitude. Each device attached to a particular
bus needs to access the value and impose the reactive power injection. It can be done with ExtAlgeb or
ExtState, which links with an existing variable from a model or a group.

3.5.1 Variable, Equation and Address

Subclasses of BaseVar are value providers and equation providers. Each BaseVar has member attributes v
and e for variable values and equation values, respectively. The initial value of v is set by the initialization
routine, and the initial value of e is set to zero. In the process of power flow calculation or time domain
simulation, v is not directly modifiable by models but rather updated after solving non-linear equations. e is
updated by the models and summed up before solving equations.

3.5. Variables 49

ANDES Manual, Release 1.2.7

Each BaseVar also stores addresses of this variable, for all devices, in its member attribute a. The addresses
are 0-based indices into the numerical DAE array, f or g, based on the variable type.

For example, Bus has self.a = Algeb () as the voltage phase angle variable. For a 5-bus system,
Bus.a . a stores the addresses of the a variable for all the five Bus devices. Conventionally, Bus.a.a will be
assigned np.array([0, 1, 2, 3, 4]).

3.5.2 Value and Equation Strings

The most important feature of the symbolic framework is allowing to define equations using strings. There
are three types of strings for a variable, stored in the following member attributes, respectively:

* v_str: equation string for explicit initialization in the form of v = v_str(x, y).
* y_iter: equation string for implicit initialization in the form of v_iter(x, y) = 0
* e_str: equation string for (full or part of) the differential or algebraic equation.

The difference between v_str and v_iter should be clearly noted. v_str evaluates directly into the initial
value, while all v_ifter equations are solved numerically using the Newton-Krylov iterative method.

3.5.3 Values Between DAE and Models

ANDES adopts a decentralized architecture which provides each model a copy of variable values before
equation evaluation. This architecture allows to parallelize the equation evaluation (in theory, or in practice
if one works round the Python GIL). However, this architecture requires a coherent protocol for updating
the DAE arrays and the BaseVar arrays. More specifically, how the variable and equations values from
model VarBase should be summed up or forcefully set at the DAE arrays needs to be defined.

The protocol is relevant when a model defines subclasses of BaseVar that are supposed to be "public”. Other
models share this variable with ExtAlgeb or ExtState.

By default, all v and e at the same address are summed up. This is the most common case, such as a Bus
connected by multiple devices: power injections from devices should be summed up.

In addition, BaseVar provides two flags, v_setter and e_setter, for cases when one VarBase needs to over-
write the variable or equation values.

3.5.4 Flags for Value Overwriting

BaseVar have special flags for handling value initialization and equation values. This is only relevant for
public or external variables. The v_setter is used to indicate whether a particular BaseVar instance sets the
initial value. The e_setter flag indicates whether the equation associated with a BaseVar sets the equation
value.

The v_setter flag is checked when collecting data from models to the numerical DAE array. If v_setter is
False, variable values of the same address will be added. If one of the variable or external variable has
v_setter is True, it will, at the end, set the values in the DAE array to its value. Only one BaseVar of the
same address is allowed to have v_setter == True.

50 Chapter 3. Modeling Cookbook

ANDES Manual, Release 1.2.7

3.5.5 A v_setter Example

A Bus is allowed to default the initial voltage magnitude to 1 and the voltage phase angle to 0. If a PV
device is connected to a Bus device, the PV should be allowed to override the voltage initial value with the
voltage set point.

In Bus.__init_ (), one has

self.v = Algeb(v_str="1")

In PV.__init__, one can use

self.v0 = Param()
self.bus = IdxParam (model='Bus')

self.v = ExtAlgeb(src='v",
model="Bus',
indexer=self.bus,
v_str='v0",
v_setter=True)

where an ExtAlgeb is defined to access Bus.v using indexer self.bus. The v_str line sets the initial value to
v0. In the variable initialization phase for PV, PV.v.v is set to v0.

During the value collection into DAE.y by the System class, PV.v, as a final v_setter, will overwrite the
voltage magnitude for Bus devices with the indices provided in PV.bus.

class andes.core.var.BaseVar (name: Optional[str] = None, tex_name: Optional[str] =
None, info: Optional[str] = None, unit: Optional[str] =
None, v_str: Union/[str, float, None] = None, v_iter: Op-
tional[str] = None, e_str: Optional[str] = None, discrete:
Optional[andes.core.discrete. Discrete] = None, v_setter:
Optional[bool] = False, e_setter: Optional[bool] =
False, addressable: Optional[bool] = True, export: Op-

tional[bool] = True, diag_eps: Optional[float] = 0.0)
Base variable class.

Derived classes State and Algeb should be used to build model variables.
Parameters
name [str, optional] Variable name
info [str, optional] Descriptive information
unit [str, optional] Unit
tex_name [str] LaTeX-formatted variable name. If is None, use name instead.

discrete [Discrete] Associated discrete component. Will call check_var on the dis-
crete component.

Attributes

a [array-like] variable address

3.5. Variables 51

ANDES Manual, Release 1.2.7

v [array-like] local-storage of the variable value
e [array-like] local-storage of the corresponding equation value
e_str [str] the string/symbolic representation of the equation

class andes.core.var.ExtVar (model: str, src: str, indexer: Union[List[T],

numpy.ndarray, andes.core.param.BaseParam, an-
des.core.service.BaseService, None] = None, allow_none:
Optional[bool] = False, name: Optional[str] = None,
tex_name: Optional[str] = None, info: Optional[str]
= None, unit: Optional[str] = None, v_str: Union/str,
float, None] = None, v_iter: Optional[str] = None,
e_str: Optional[str] = None, v_setter: Optional[bool]
= Fualse, e_setter: Optional[bool] = False, addressable:
Optional[bool] = True, export: Optional[bool] = True,
diag_eps: Optional[float] = 0.0)

Externally defined algebraic variable

This class is used to retrieve the addresses of externally- defined variable. The e value of the ExtVar

will be added to the corresponding address in the DAE equation.

Parameters
model [str] Name of the source model
src [str] Source variable name

indexer [BaseParam, BaseService] A parameter of the hosting model, used as indices
into the source model and variable. If is None, the source variable address will be
fully copied.

allow_none [bool] True to allow None in indexer
Attributes
parent_model [Model] The parent model providing the original parameter.

uid [array-like] An array containing the absolute indices into the parent_instance val-
ues.

e_code [str] Equation code string; copied from the parent instance.

v_code [str] Variable code string; copied from the parent instance.

52 Chapter 3. Modeling Cookbook

ANDES Manual, Release 1.2.7

class andes.core.var.State (name: Optional[str] = None, tex_name: Optional[str]
= None, info: Optional[str] = None, unit: Optional[str]
= None, v_str: Union[str, float, None] = None, v_iter:
Optional[str] = None, e_str: Optional[str] = None,
discrete: Optional[andes.core.discrete.Discrete] =
None, t_const: Union[andes.core.param.BaseParam,
andes.core.common.DummyValue, an-
des.core.service.BaseService, None] = None, v_setter:
Optional[bool] = False, e_setter: Optional[bool] = False,
addressable: Optional[bool] = True, export: Optional[bool]
= True, diag_eps: Optional[float] = 0.0)

Differential variable class, an alias of the BaseVar.

Parameters

t_const [BaseParam, Dummy Value] Left-hand time constant for the differential equa-
tion. Time constants will not be evaluated as part of the differential equation. They
will be collected to array dae.Tf to multiply to the right-hand side dae.f.

Attributes

e_code [str] Equation code string, equals string literal £
v_code [str] Variable code string, equals string literal x

class andes.core.var.Algeb (name: Optional[str] = None, tex_name: Optional[str] =
None, info: Optional[str] = None, unit: Optional[str] =
None, v_str: Union/[str, float, None] = None, v_iter: Op-
tional[str] = None, e_str: Optional[str] = None, discrete:
Optional[andes.core.discrete.Discrete] = None, v_setter:
Optional[bool] = False, e_setter: Optional[bool] = False,
addressable: Optional[bool] = True, export: Optional[bool]
= True, diag_eps: Optional{float] = 0.0)

Algebraic variable class, an alias of the BaseVar.

Attributes

e_code [str] Equation code string, equals string literal g
v_code [str] Variable code string, equals string literal y

class andes.core.var.ExtState (model: str, src: str, indexer: Union[List[T],
numpy.ndarray, andes.core.param.BaseParam, an-
des.core.service.BaseService, None] = None, al-
low_none: Optional[bool] = False, name: Op-
tional[str] = None, tex_name: Optional[str] = None,
info: Optional[str] = None, unit: Optional[str] =
None, v_str: Union[str, float, None] = None, v_iter:
Optional[str] = None, e_str: Optional[str] = None,
v_setter: Optional[bool] = False, e_setter: Op-
tional[bool] = False, addressable: Optional[bool]
= True, export: Optional[bool] = True, diag_eps:
Optional[float] = 0.0)

3.5. Variables 53

ANDES Manual, Release 1.2.7

External state variable type.

Warning: ExtState is not allowed to set t _const, as it will conflict with the source State
variable. In fact, one should not set e_str for ExtState.

class andes.core.var.ExtAlgeb (model: str, src: st, indexer: Union[List[T],
numpy.ndarray, andes.core.param.BaseParam, an-
des.core.service.BaseService, None] = None, al-
low_none: Optional[bool] = False, name: Op-
tional[str] = None, tex_name: Optional[str] = None,
info: Optional[str] = None, unit: Optional[str] =
None, v_str: Union[str, float, None] = None, v_iter:
Optional[str] = None, e_str: Optional[str] = None,
v_setter: Optional[bool] = False, e_setter: Op-
tional[bool] = False, addressable: Optional[bool]
= True, export: Optional[bool] = True, diag_eps:

Optional[float] = 0.0)
External algebraic variable type.

class andes.core.var.AliasState (var, **kwargs)
Alias state variable.

Refer to the docs of AliasAlgeb.

class andes.core.var.AliasAlgeb (var, **kwargs)
Alias algebraic variable. Essentially Ext Algeb that links to a a model’s own variable.

AliasAlgeb is useful when the final output of a model is from a block, but the model must provide
the final output in a pre-defined name. Using A1iasAlgeb, A model can avoid adding an additional
variable with a dummy equations.

Like ExtVar, labels of A1iasAlgeb will not be saved in the final output. When plotting from file,
one need to look up the original variable name.

3.6 Services

Services are helper variables outside the DAE variable list. Services are most often used for storing interme-
diate constants but can be used for special operations to work around restrictions in the symbolic framework.
Services are value providers, meaning each service has an attribute v for storing service values. The base
class of services is BaseService, and the supported services are listed as follows.

54 Chapter 3. Modeling Cookbook

ANDES Manual, Release 1.2.7

Class Description

ConstService Internal service for constant values.

VarService Variable service updated at each iteration before equations.
ExtService External service for retrieving values from value providers.
PostlnitService | Constant service evaluated after TDS initialization
NumReduce The service type for reducing linear 2-D arrays into 1-D arrays
NumRepeat The service type for repeating a 1-D array to linear 2-D arrays
IdxRepeat The service type for repeating a 1-D list to linear 2-D list
EventFlag Service type for flagging changes in inputs as an event
VarHold Hold input value when a hold signal is active

ExtendedEvent | Extend an event signal for a given period of time

DataSelect Select optional str data if provided or use the fallback
NumSelect Select optional numerical data if provided

DeviceFinder Finds or creates devices linked to the given devices

BackRef Collects idx-es for the backward references

RefFlatten Converts BackRef list of lists into a 1-D list

InitChecker Checks initial values against typical values

FlagValue Flags values that equals the given value

Replace Replace values that returns True for the given lambda func

3.6.1 Internal Constants

The most commonly used service is ConstService. It is used to store an array of constants, whose value
is evaluated from a provided symbolic string. They are only evaluated once in the model initialization
phase, ahead of variable initialization. ConstService comes handy when one wants to calculate intermediate
constants from parameters.

For example, a turbine governor has a NumParam R for the droop. ConstService allows to calculate the

inverse of the droop, the gain, and use it in equations. The snippet from a turbine governor’s __init__ ()
may look like

self.R = NumParam/()

self.G = ConstService(v_str='u/R")

where u is the online status parameter. The model can thus use G in subsequent variable or equation strings.

class andes.core.service.ConstService (v_str: Optional[str] = None, v_numeric:
Optional[Callable] = None, vtype: Op-
tional[type] = None, name: Optional[str] =

None, tex_name=None, info=None)
A type of Service that stays constant once initialized.

ConstService are usually constants calculated from parameters. They are only evaluated once in the
initialization phase before variables are initialized. Therefore, uninitialized variables must not be used
in v_str'.

Parameters

name [str] Name of the ConstService

3.6. Services 55

ANDES Manual, Release 1.2.7

v_str [str] An equation string to calculate the variable value.

v_numeric [Callable, optional] A callable which returns the value of the ConstSer-
vice

Attributes

v [array-like or a scalar] ConstService value

class andes.core.service.VarService (v_str: Optional[str] = None, v_numeric:

Optional[Callable] = None, vtype: Op-
tional[type] = None, name: Optional[str] =
None, tex_name=None, info=None)
Variable service that gets updated in each step/loop as variables change.
This class is useful when one has non-differentiable algebraic equations, which make use of abs(),

re and im. Instead of creating Algeb, one can put the equation in VarService, which will be updated
before solving algebraic equations.

Warning: VarService is not solved with other algebraic equations, meaning that there is one

step "delay" between the algebraic variables and VarService. Use an algebraic variable whenever
possible.

Examples

In ESST3A model, the voltage and current sensors (vd + jvq), (Id + jIq) estimate the sensed VE using
equation

VE = |Kpc * (vg + 1jvg) + 1j(Kr + Kpc * X1) * (Ig + 151,)|

One can use VarService to implement this equation

self.VE = VarService (
tex_name='V_E"',
info='VE",
v_str="Abs (KPCx (vd + 1jxvqg) + 13x(KI + KPCxXL)«* (Id + 1j*Iqg))"',
)

class andes.core.service.PostInitService (v_str: Optional[str] = None,

V_numeric: Optional[Callable]
= None, vtype: Optional[type] =
None, name: Optional[str] = None,
tex_name=None, info=None)

Constant service that gets stored once after init.

This service is useful when one need to store initialization values stored in variables.

56

Chapter 3. Modeling Cookbook

ANDES Manual, Release 1.2.7

Examples

In ESST3A model, the vf variable is initialized followed by other variables. One can store the initial
vf into vf0 so that equation vi — v£0 = 0 will hold.

self.vref0 = PostInitService(info='Initial reference voltage input',
tex_name='V__ ',
v_str='vref',

)

Since all ConstService are evaluated before equation evaluation, without using PostlInitService, one
will need to create lots of ConstService to store values in the initialization path towards vf0, in order
to correctly initialize vf.

3.6.2 External Constants

Service constants whose value is retrieved from an external model or group. Using ExtService is similar
to using external variables. The values of ExtService will be retrieved once during the initialization phase
before ConstService evaluation.

For example, a synchronous generator needs to retrieve the p and ¢ values from static generators for initial-
ization. ExtService is used for this purpose. Inthe __init__ () of a synchronous generator model, one
can define the following to retrieve StaticGen.p as p0:

self.p0 = ExtService(src='p',
model="'StaticGen',
indexer=self.gen,
tex_name='P_0")

class andes.core.service.ExtService (model: Sty src: Sty indexer:
Union[andes.core.param.BaseParam, an-
des.core.service.BaseService], attr: str =
v, allow_none: bool = False, default=0,
name: str = None, tex_name: str = None,
vtype=None, info: str = None)
Service constants whose value is from an external model or group.

Parameters
src [str] Variable or parameter name in the source model or group
model [str] A model name or a group name

indexer [IdxParam or BaseParam] An "Indexer" instance whose v field contains the
idx of devices in the model or group.

Examples

A synchronous generator needs to retrieve the p and g values from static generators for initialization.
ExtService is used for this purpose.

3.6. Services 57

ANDES Manual, Release 1.2.7

In a synchronous generator, one can define the following to retrieve StaticGen.p as p0:

class GENCLSModel (Model) :
def _ init_ (...):

self.p0 = ExtService(src='p',
model="'StaticGen',
indexer=self.gen,
tex_name='P_0")

3.6.3 Shape Manipulators

This section is for advanced model developer.

All generated equations operate on 1-dimensional arrays and can use algebraic calculations only. In some
cases, one model would use BackRef to retrieve 2-dimensional indices and will use such indices to retrieve
variable addresses. The retrieved addresses usually has a different length of the referencing model and
cannot be used directly for calculation. Shape manipulator services can be used in such case.

NumReduce is a helper Service type which reduces a linearly stored 2-D ExtParam into 1-D Service. Num-
Repeat is a helper Service type which repeats a 1-D value into linearly stored 2-D value based on the shape
from a BackRef.

class andes.core.serv