Exciter#

Exciter group for synchronous generators.

Common Parameters: u, name, syn

Common Variables: vout, vi

Available models: EXDC2, IEEEX1, ESDC1A, ESDC2A, EXST1, ESST3A, SEXS, IEEET1, EXAC1, EXAC2, EXAC4, ESST4B, AC8B, IEEET3, ESAC1A, ESST1A, ESAC5A

EXDC2#

EXDC2 model.

Parameters#

Name

Symbol

Description

Default

Unit

Properties

idx

unique device idx

u

\(u\)

connection status

1

bool

name

device name

syn

Synchronous generator idx

mandatory

TR

\(T_R\)

Sensing time constant

0.010

p.u.

TA

\(T_A\)

Lag time constant in anti-windup lag

0.040

p.u.

TC

\(T_C\)

Lead time constant in lead-lag

1

p.u.

TB

\(T_B\)

Lag time constant in lead-lag

1

p.u.

TE

\(T_E\)

Exciter integrator time constant

0.800

p.u.

TF1

\(T_{F1}\)

Feedback washout time constant

1

p.u.

non_zero

KF1

\(K_{F1}\)

Feedback washout gain

0.030

p.u.

KA

\(K_A\)

Gain in anti-windup lag TF

40

p.u.

KE

\(K_E\)

Gain added to saturation

1

p.u.

VRMAX

\(V_{RMAX}\)

Maximum excitation limit

7.300

p.u.

VRMIN

\(V_{RMIN}\)

Minimum excitation limit

-7.300

p.u.

E1

\(E_1\)

First saturation point

0

p.u.

SE1

\(S_{E1}\)

Value at first saturation point

0

p.u.

E2

\(E_2\)

Second saturation point

1

p.u.

SE2

\(S_{E2}\)

Value at second saturation point

1

p.u.

ug

\(u_g\)

Generator online status

0

bool

Sn

\(S_m\)

Rated power from generator

0

MVA

Vn

\(V_m\)

Rated voltage from generator

0

kV

bus

\(bus\)

Bus idx of the generators

0

Variables#

Name

Symbol

Type

Description

Unit

Properties

vp

\(vp\)

State

Voltage after saturation feedback, before speed term

p.u.

v_str

LS_y

\(LS_{y}\)

State

State in lag transfer function

v_str

LL_x

\(LL_{x}\)

State

State in lead-lag

v_str

LA_y

\(LA_{y}\)

State

State in lag TF

v_str

W_x

\(W_{x}\)

State

State in washout filter

v_str

omega

\(\omega\)

ExtState

Generator speed

v

\(v\)

Algeb

Input to exciter (bus v or Eterm)

v_str

vout

\(vout\)

Algeb

Exciter final output voltage

v_str

vref

\(vref\)

Algeb

Reference voltage input

p.u.

v_str

Se

\(Se\)

Algeb

saturation output

v_str

vi

\(vi\)

Algeb

Total input voltages

p.u.

v_str

LL_y

\(LL_{y}\)

Algeb

Output of lead-lag

v_str

W_y

\(W_{y}\)

Algeb

Output of washout filter

v_str

vf

\(vf\)

ExtAlgeb

Excitation field voltage to generator

XadIfd

\(XadIfd\)

ExtAlgeb

Armature excitation current

a

\(a\)

ExtAlgeb

Bus voltage phase angle

vbus

\(vbus\)

ExtAlgeb

Bus voltage magnitude

Initialization Equations#

Name

Symbol

Type

Initial Value

vp

\(vp\)

State

\(vf_{0}\)

LS_y

\(LS_{y}\)

State

\(1.0 v\)

LL_x

\(LL_{x}\)

State

\(vi\)

LA_y

\(LA_{y}\)

State

\(KA LL_{y}\)

W_x

\(W_{x}\)

State

\(vp\)

omega

\(\omega\)

ExtState

v

\(v\)

Algeb

\(vbus\)

vout

\(vout\)

Algeb

\(ue vf_{0}\)

vref

\(vref\)

Algeb

\(v + vb_{0}\)

Se

\(Se\)

Algeb

\(Se_{0}\)

vi

\(vi\)

Algeb

\(vb_{0}\)

LL_y

\(LL_{y}\)

Algeb

\(vi\)

W_y

\(W_{y}\)

Algeb

\(0\)

vf

\(vf\)

ExtAlgeb

XadIfd

\(XadIfd\)

ExtAlgeb

a

\(a\)

ExtAlgeb

vbus

\(vbus\)

ExtAlgeb

Differential Equations#

Name

Symbol

Type

RHS of Equation "T x' = f(x, y)"

T (LHS)

vp

\(vp\)

State

\(ue \left(- KE vp + LA_{y} - Se vp\right)\)

\(T_E\)

LS_y

\(LS_{y}\)

State

\(- LS_{y} + 1.0 v\)

\(T_R\)

LL_x

\(LL_{x}\)

State

\(- LL_{x} + vi\)

\(T_B\)

LA_y

\(LA_{y}\)

State

\(KA LL_{y} - LA_{y}\)

\(T_A\)

W_x

\(W_{x}\)

State

\(- W_{x} + vp\)

\(T_{F1}\)

omega

\(\omega\)

ExtState

\(0\)

Algebraic Equations#

Name

Symbol

Type

RHS of Equation "0 = g(x, y)"

v

\(v\)

Algeb

\(- v + vbus\)

vout

\(vout\)

Algeb

\(\omega ue vp - vout\)

vref

\(vref\)

Algeb

\(- vref + vref_{0}\)

Se

\(Se\)

Algeb

\(SAT_{B} SL_{z0} \left(- SAT_{A} + vp\right)^{2} - Se vp\)

vi

\(vi\)

Algeb

\(- LS_{y} - W_{y} - vi + vref\)

LL_y

\(LL_{y}\)

Algeb

\(LL_{LT1 z1} LL_{LT2 z1} \left(- LL_{x} + LL_{y}\right) + LL_{x} TB - LL_{y} TB + TC \left(- LL_{x} + vi\right)\)

W_y

\(W_{y}\)

Algeb

\(KF_{1} \left(- W_{x} + vp\right) - TF_{1} W_{y}\)

vf

\(vf\)

ExtAlgeb

\(ue \left(- vf_{0} + vout\right)\)

XadIfd

\(XadIfd\)

ExtAlgeb

\(0\)

a

\(a\)

ExtAlgeb

\(0\)

vbus

\(vbus\)

ExtAlgeb

\(0\)

Services#

Name

Symbol

Equation

Type

ue

\(u_e\)

\(u ug\)

ConstService

SAT_E1

\(E^{1c}_{SAT}\)

\(E_{1}\)

ConstService

SAT_E2

\(E^{2c}_{SAT}\)

\(E_{2} - 2 SAT_{zSE2} + 2\)

ConstService

SAT_SE1

\(SE^{1c}_{SAT}\)

\(SE_{1}\)

ConstService

SAT_SE2

\(SE^{2c}_{SAT}\)

\(- 2 SAT_{zSE2} + SE_{2} + 2\)

ConstService

SAT_a

\(a_{SAT}\)

\(\sqrt{\frac{SAT_{E1} SAT_{SE1}}{SAT_{E2} SAT_{SE2}}} \left(\operatorname{Indicator}{\left(SAT_{SE2} > 0 \right)} + \operatorname{Indicator}{\left(SAT_{SE2} < 0 \right)}\right)\)

ConstService

SAT_A

\(A^q_{SAT}\)

\(SAT_{E2} - \frac{SAT_{E1} - SAT_{E2}}{SAT_{a} - 1}\)

ConstService

SAT_B

\(B^q_{SAT}\)

\(\frac{SAT_{E2} SAT_{SE2} \left(SAT_{a} - 1\right)^{2} \left(\operatorname{Indicator}{\left(SAT_{a} > 0 \right)} + \operatorname{Indicator}{\left(SAT_{a} < 0 \right)}\right)}{\left(SAT_{E1} - SAT_{E2}\right)^{2}}\)

ConstService

Se0

\(S_{e0}\)

\(\frac{SAT_{B} \left(SAT_{A} - vf_{0}\right)^{2} \operatorname{Indicator}{\left(vf_{0} > SAT_{A} \right)}}{- ug + vf_{0} + 1}\)

ConstService

vr0

\(V_{r0}\)

\(vf_{0} \left(KE + Se_{0}\right)\)

ConstService

vb0

\(V_{b0}\)

\(\frac{vr_{0}}{KA}\)

ConstService

vref0

\(V_{ref0}\)

\(vref\)

PostInitService

Discretes#

Name

Symbol

Type

Info

SL

\(SL\)

LessThan

LL_LT1

\(LT_{LL}\)

LessThan

LL_LT2

\(LT_{LL}\)

LessThan

LA_lim

\(lim_{LA}\)

AntiWindup

Limiter in Lag

Blocks#

Name

Symbol

Type

Info

SAT

\(SAT\)

ExcQuadSat

Field voltage saturation

LS

\(LS\)

Lag

Sensing lag TF

LL

\(LL\)

LeadLag

Lead-lag for internal delays

LA

\(LA\)

LagAntiWindup

Anti-windup lag

W

\(W\)

Washout

Signal conditioner

Config Fields in [EXDC2]

Option

Symbol

Value

Info

Accepted values

allow_adjust

1

allow adjusting upper or lower limits

(0, 1)

adjust_lower

0

adjust lower limit

(0, 1)

adjust_upper

1

adjust upper limit

(0, 1)

IEEEX1#

IEEEX1 Type 1 exciter (DC)

Derived from EXDC2 by varying the limiter bounds.

Parameters#

Name

Symbol

Description

Default

Unit

Properties

idx

unique device idx

u

\(u\)

connection status

1

bool

name

device name

syn

Synchronous generator idx

mandatory

TR

\(T_R\)

Sensing time constant

0.010

p.u.

TA

\(T_A\)

Lag time constant in anti-windup lag

0.040

p.u.

TC

\(T_C\)

Lead time constant in lead-lag

1

p.u.

TB

\(T_B\)

Lag time constant in lead-lag

1

p.u.

TE

\(T_E\)

Exciter integrator time constant

0.800

p.u.

TF1

\(T_{F1}\)

Feedback washout time constant

1

p.u.

non_zero

KF1

\(K_{F1}\)

Feedback washout gain

0.030

p.u.

KA

\(K_A\)

Gain in anti-windup lag TF

40

p.u.

KE

\(K_E\)

Gain added to saturation

1

p.u.

VRMAX

\(V_{RMAX}\)

Maximum excitation limit

7.300

p.u.

VRMIN

\(V_{RMIN}\)

Minimum excitation limit

-7.300

p.u.

E1

\(E_1\)

First saturation point

0

p.u.

SE1

\(S_{E1}\)

Value at first saturation point

0

p.u.

E2

\(E_2\)

Second saturation point

1

p.u.

SE2

\(S_{E2}\)

Value at second saturation point

1

p.u.

ug

\(u_g\)

Generator online status

0

bool

Sn

\(S_m\)

Rated power from generator

0

MVA

Vn

\(V_m\)

Rated voltage from generator

0

kV

bus

\(bus\)

Bus idx of the generators

0

Variables#

Name

Symbol

Type

Description

Unit

Properties

vp

\(vp\)

State

Voltage after saturation feedback, before speed term

p.u.

v_str

LS_y

\(LS_{y}\)

State

State in lag transfer function

v_str

LL_x

\(LL_{x}\)

State

State in lead-lag

v_str

LA_y

\(LA_{y}\)

State

State in lag TF

v_str

W_x

\(W_{x}\)

State

State in washout filter

v_str

omega

\(\omega\)

ExtState

Generator speed

v

\(v\)

Algeb

Input to exciter (bus v or Eterm)

v_str

vout

\(vout\)

Algeb

Exciter final output voltage

v_str

vref

\(vref\)

Algeb

Reference voltage input

p.u.

v_str

Se

\(Se\)

Algeb

saturation output

v_str

vi

\(vi\)

Algeb

Total input voltages

p.u.

v_str

LL_y

\(LL_{y}\)

Algeb

Output of lead-lag

v_str

W_y

\(W_{y}\)

Algeb

Output of washout filter

v_str

vf

\(vf\)

ExtAlgeb

Excitation field voltage to generator

XadIfd

\(XadIfd\)

ExtAlgeb

Armature excitation current

a

\(a\)

ExtAlgeb

Bus voltage phase angle

vbus

\(vbus\)

ExtAlgeb

Bus voltage magnitude

Initialization Equations#

Name

Symbol

Type

Initial Value

vp

\(vp\)

State

\(vf_{0}\)

LS_y

\(LS_{y}\)

State

\(1.0 v\)

LL_x

\(LL_{x}\)

State

\(vi\)

LA_y

\(LA_{y}\)

State

\(KA LL_{y}\)

W_x

\(W_{x}\)

State

\(vp\)

omega

\(\omega\)

ExtState

v

\(v\)

Algeb

\(vbus\)

vout

\(vout\)

Algeb

\(ue vf_{0}\)

vref

\(vref\)

Algeb

\(v + vb_{0}\)

Se

\(Se\)

Algeb

\(Se_{0}\)

vi

\(vi\)

Algeb

\(vb_{0}\)

LL_y

\(LL_{y}\)

Algeb

\(vi\)

W_y

\(W_{y}\)

Algeb

\(0\)

vf

\(vf\)

ExtAlgeb

XadIfd

\(XadIfd\)

ExtAlgeb

a

\(a\)

ExtAlgeb

vbus

\(vbus\)

ExtAlgeb

Differential Equations#

Name

Symbol

Type

RHS of Equation "T x' = f(x, y)"

T (LHS)

vp

\(vp\)

State

\(ue \left(- KE vp + LA_{y} - Se vp\right)\)

\(T_E\)

LS_y

\(LS_{y}\)

State

\(- LS_{y} + 1.0 v\)

\(T_R\)

LL_x

\(LL_{x}\)

State

\(- LL_{x} + vi\)

\(T_B\)

LA_y

\(LA_{y}\)

State

\(KA LL_{y} - LA_{y}\)

\(T_A\)

W_x

\(W_{x}\)

State

\(- W_{x} + vp\)

\(T_{F1}\)

omega

\(\omega\)

ExtState

\(0\)

Algebraic Equations#

Name

Symbol

Type

RHS of Equation "0 = g(x, y)"

v

\(v\)

Algeb

\(- v + vbus\)

vout

\(vout\)

Algeb

\(ue vp - vout\)

vref

\(vref\)

Algeb

\(- vref + vref_{0}\)

Se

\(Se\)

Algeb

\(SAT_{B} SL_{z0} \left(- SAT_{A} + vp\right)^{2} - Se vp\)

vi

\(vi\)

Algeb

\(- LS_{y} - W_{y} - vi + vref\)

LL_y

\(LL_{y}\)

Algeb

\(LL_{LT1 z1} LL_{LT2 z1} \left(- LL_{x} + LL_{y}\right) + LL_{x} TB - LL_{y} TB + TC \left(- LL_{x} + vi\right)\)

W_y

\(W_{y}\)

Algeb

\(KF_{1} \left(- W_{x} + vp\right) - TF_{1} W_{y}\)

vf

\(vf\)

ExtAlgeb

\(ue \left(- vf_{0} + vout\right)\)

XadIfd

\(XadIfd\)

ExtAlgeb

\(0\)

a

\(a\)

ExtAlgeb

\(0\)

vbus

\(vbus\)

ExtAlgeb

\(0\)

Services#

Name

Symbol

Equation

Type

ue

\(u_e\)

\(u ug\)

ConstService

SAT_E1

\(E^{1c}_{SAT}\)

\(E_{1}\)

ConstService

SAT_E2

\(E^{2c}_{SAT}\)

\(E_{2} - 2 SAT_{zSE2} + 2\)

ConstService

SAT_SE1

\(SE^{1c}_{SAT}\)

\(SE_{1}\)

ConstService

SAT_SE2

\(SE^{2c}_{SAT}\)

\(- 2 SAT_{zSE2} + SE_{2} + 2\)

ConstService

SAT_a

\(a_{SAT}\)

\(\sqrt{\frac{SAT_{E1} SAT_{SE1}}{SAT_{E2} SAT_{SE2}}} \left(\operatorname{Indicator}{\left(SAT_{SE2} > 0 \right)} + \operatorname{Indicator}{\left(SAT_{SE2} < 0 \right)}\right)\)

ConstService

SAT_A

\(A^q_{SAT}\)

\(SAT_{E2} - \frac{SAT_{E1} - SAT_{E2}}{SAT_{a} - 1}\)

ConstService

SAT_B

\(B^q_{SAT}\)

\(\frac{SAT_{E2} SAT_{SE2} \left(SAT_{a} - 1\right)^{2} \left(\operatorname{Indicator}{\left(SAT_{a} > 0 \right)} + \operatorname{Indicator}{\left(SAT_{a} < 0 \right)}\right)}{\left(SAT_{E1} - SAT_{E2}\right)^{2}}\)

ConstService

Se0

\(S_{e0}\)

\(\frac{SAT_{B} \left(SAT_{A} - vf_{0}\right)^{2} \operatorname{Indicator}{\left(vf_{0} > SAT_{A} \right)}}{- ug + vf_{0} + 1}\)

ConstService

vr0

\(V_{r0}\)

\(vf_{0} \left(KE + Se_{0}\right)\)

ConstService

vb0

\(V_{b0}\)

\(\frac{vr_{0}}{KA}\)

ConstService

vref0

\(V_{ref0}\)

\(vref\)

PostInitService

VRTMAX

\(V_{RMAX}V_T\)

\(VRMAX v\)

VarService

VRTMIN

\(V_{RMIN}V_T\)

\(VRMIN v\)

VarService

Discretes#

Name

Symbol

Type

Info

SL

\(SL\)

LessThan

LL_LT1

\(LT_{LL}\)

LessThan

LL_LT2

\(LT_{LL}\)

LessThan

LA_lim

\(lim_{LA}\)

AntiWindup

Limiter in Lag

Blocks#

Name

Symbol

Type

Info

SAT

\(SAT\)

ExcQuadSat

Field voltage saturation

LS

\(LS\)

Lag

Sensing lag TF

LL

\(LL\)

LeadLag

Lead-lag for internal delays

LA

\(LA\)

LagAntiWindup

Anti-windup lag

W

\(W\)

Washout

Signal conditioner

Config Fields in [IEEEX1]

Option

Symbol

Value

Info

Accepted values

allow_adjust

1

allow adjusting upper or lower limits

(0, 1)

adjust_lower

0

adjust lower limit

(0, 1)

adjust_upper

1

adjust upper limit

(0, 1)

ESDC1A#

ESDC1A model.

This model derives from ESDC2A and changes the regular limits to "VRMAX" and "VRMIN".

Parameters#

Name

Symbol

Description

Default

Unit

Properties

idx

unique device idx

u

\(u\)

connection status

1

bool

name

device name

syn

Synchronous generator idx

mandatory

TR

\(T_R\)

Sensing time constant

0.010

p.u.

KA

\(K_A\)

Regulator gain

80

TA

\(T_A\)

Lag time constant in regulator

0.040

p.u.

TB

\(T_B\)

Lag time constant in lead-lag

1

p.u.

TC

\(T_C\)

Lead time constant in lead-lag

1

p.u.

VRMAX

\(V_{RMAX}\)

Max. exc. limit (0-unlimited)

7.300

p.u.

VRMIN

\(V_{RMIN}\)

Min. excitation limit

-7.300

p.u.

KE

\(K_E\)

Saturation feedback gain

1

p.u.

TE

\(T_E\)

Integrator time constant

0.800

p.u.

KF

\(K_F\)

Feedback gain

0.100

TF1

\(T_{F1}\)

Feedback washout time constant

1

p.u.

non_zero,non_negative

Switch

\(S_w\)

Switch that PSS/E did not implement

0

bool

E1

\(E_1\)

First saturation point

0

p.u.

SE1

\(S_{E1}\)

Value at first saturation point

0

p.u.

E2

\(E_2\)

Second saturation point

0

p.u.

SE2

\(S_{E2}\)

Value at second saturation point

0

p.u.

ug

\(u_g\)

Generator online status

0

bool

Sn

\(S_m\)

Rated power from generator

0

MVA

Vn

\(V_m\)

Rated voltage from generator

0

kV

bus

\(bus\)

Bus idx of the generators

0

Variables#

Name

Symbol

Type

Description

Unit

Properties

LG_y

\(LG_{y}\)

State

State in lag transfer function

v_str

LL_x

\(LL_{x}\)

State

State in lead-lag

v_str

LA_y

\(LA_{y}\)

State

State in lag TF

v_str

INT_y

\(INT_{y}\)

State

Integrator output

v_str

WF_x

\(WF_{x}\)

State

State in washout filter

v_str

omega

\(\omega\)

ExtState

Generator speed

v

\(v\)

Algeb

Input to exciter (bus v or Eterm)

v_str

vout

\(vout\)

Algeb

Exciter final output voltage

v_str

vref

\(vref\)

Algeb

Reference voltage input

p.u.

v_str

vi

\(vi\)

Algeb

Total input voltages

p.u.

v_str

LL_y

\(LL_{y}\)

Algeb

Output of lead-lag

v_str

UEL

\(UEL\)

Algeb

Interface var for under exc. limiter

v_str

HG_y

\(HG_{y}\)

Algeb

HVGate output

v_str

Se

\(Se\)

Algeb

saturation output

v_str

VFE

\(VFE\)

Algeb

Combined saturation feedback

p.u.

v_str

WF_y

\(WF_{y}\)

Algeb

Output of washout filter

v_str

vf

\(vf\)

ExtAlgeb

Excitation field voltage to generator

XadIfd

\(XadIfd\)

ExtAlgeb

Armature excitation current

a

\(a\)

ExtAlgeb

Bus voltage phase angle

vbus

\(vbus\)

ExtAlgeb

Bus voltage magnitude

Initialization Equations#

Name

Symbol

Type

Initial Value

LG_y

\(LG_{y}\)

State

\(v\)

LL_x

\(LL_{x}\)

State

\(vi\)

LA_y

\(LA_{y}\)

State

\(KA LL_{y}\)

INT_y

\(INT_{y}\)

State

\(vf_{0}\)

WF_x

\(WF_{x}\)

State

\(INT_{y}\)

omega

\(\omega\)

ExtState

v

\(v\)

Algeb

\(vbus\)

vout

\(vout\)

Algeb

\(ue vf_{0}\)

vref

\(vref\)

Algeb

\(v + \frac{vfe_{0}}{KA}\)

vi

\(vi\)

Algeb

\(\frac{vfe_{0}}{KA}\)

LL_y

\(LL_{y}\)

Algeb

\(vi\)

UEL

\(UEL\)

Algeb

\(0\)

HG_y

\(HG_{y}\)

Algeb

\(HG_{lt z0} UEL + HG_{lt z1} LL_{y}\)

Se

\(Se\)

Algeb

\(Se_{0}\)

VFE

\(VFE\)

Algeb

\(vfe_{0}\)

WF_y

\(WF_{y}\)

Algeb

\(0\)

vf

\(vf\)

ExtAlgeb

XadIfd

\(XadIfd\)

ExtAlgeb

a

\(a\)

ExtAlgeb

vbus

\(vbus\)

ExtAlgeb

Differential Equations#

Name

Symbol

Type

RHS of Equation "T x' = f(x, y)"

T (LHS)

LG_y

\(LG_{y}\)

State

\(- LG_{y} + v\)

\(T_R\)

LL_x

\(LL_{x}\)

State

\(- LL_{x} + vi\)

\(T_B\)

LA_y

\(LA_{y}\)

State

\(KA LL_{y} - LA_{y}\)

\(T_A\)

INT_y

\(INT_{y}\)

State

\(ue \left(LA_{y} - VFE\right)\)

\(T_E\)

WF_x

\(WF_{x}\)

State

\(INT_{y} - WF_{x}\)

\(T_{F1}\)

omega

\(\omega\)

ExtState

\(0\)

Algebraic Equations#

Name

Symbol

Type

RHS of Equation "0 = g(x, y)"

v

\(v\)

Algeb

\(- v + vbus\)

vout

\(vout\)

Algeb

\(INT_{y} - vout\)

vref

\(vref\)

Algeb

\(- vref + vref_{0}\)

vi

\(vi\)

Algeb

\(- WF_{y} - v - vi + vref\)

LL_y

\(LL_{y}\)

Algeb

\(LL_{LT1 z1} LL_{LT2 z1} \left(- LL_{x} + LL_{y}\right) + LL_{x} TB - LL_{y} TB + TC \left(- LL_{x} + vi\right)\)

UEL

\(UEL\)

Algeb

\(- UEL\)

HG_y

\(HG_{y}\)

Algeb

\(HG_{lt z0} UEL + HG_{lt z1} LL_{y} - HG_{y}\)

Se

\(Se\)

Algeb

\(SAT_{B} SL_{z0} \left(INT_{y} - SAT_{A}\right)^{2} - Se\)

VFE

\(VFE\)

Algeb

\(INT_{y} KE + Se - VFE\)

WF_y

\(WF_{y}\)

Algeb

\(KF \left(INT_{y} - WF_{x}\right) - TF_{1} WF_{y}\)

vf

\(vf\)

ExtAlgeb

\(ue \left(- vf_{0} + vout\right)\)

XadIfd

\(XadIfd\)

ExtAlgeb

\(0\)

a

\(a\)

ExtAlgeb

\(0\)

vbus

\(vbus\)

ExtAlgeb

\(0\)

Services#

Name

Symbol

Equation

Type

ue

\(u_e\)

\(u ug\)

ConstService

VRMAXc

\(VRMAXc\)

\(VRMAX - 999 _zVRM + 999\)

ConstService

SAT_E1

\(E^{1c}_{SAT}\)

\(E_{1}\)

ConstService

SAT_E2

\(E^{2c}_{SAT}\)

\(E_{2} - 2 SAT_{zSE2} + 2\)

ConstService

SAT_SE1

\(SE^{1c}_{SAT}\)

\(SE_{1}\)

ConstService

SAT_SE2

\(SE^{2c}_{SAT}\)

\(- 2 SAT_{zSE2} + SE_{2} + 2\)

ConstService

SAT_a

\(a_{SAT}\)

\(\sqrt{\frac{SAT_{E1} SAT_{SE1}}{SAT_{E2} SAT_{SE2}}} \left(\operatorname{Indicator}{\left(SAT_{SE2} > 0 \right)} + \operatorname{Indicator}{\left(SAT_{SE2} < 0 \right)}\right)\)

ConstService

SAT_A

\(A^q_{SAT}\)

\(SAT_{E2} - \frac{SAT_{E1} - SAT_{E2}}{SAT_{a} - 1}\)

ConstService

SAT_B

\(B^q_{SAT}\)

\(\frac{SAT_{E2} SAT_{SE2} \left(SAT_{a} - 1\right)^{2} \left(\operatorname{Indicator}{\left(SAT_{a} > 0 \right)} + \operatorname{Indicator}{\left(SAT_{a} < 0 \right)}\right)}{\left(SAT_{E1} - SAT_{E2}\right)^{2}}\)

ConstService

Se0

\(S_{e0}\)

\(SAT_{B} \left(SAT_{A} - vf_{0}\right)^{2} \operatorname{Indicator}{\left(vf_{0} > SAT_{A} \right)}\)

ConstService

vfe0

\(V_{FE0}\)

\(KE vf_{0} + Se_{0}\)

ConstService

vref0

\(V_{ref0}\)

\(vref\)

PostInitService

VRU

\(V_{RMAX}\)

\(VRMAXc\)

ConstService

VRL

\(V_{RMIN}\)

\(VRMIN\)

ConstService

Discretes#

Name

Symbol

Type

Info

LL_LT1

\(LT_{LL}\)

LessThan

LL_LT2

\(LT_{LL}\)

LessThan

HG_lt

\(None_{HG}\)

LessThan

LA_lim

\(lim_{LA}\)

AntiWindup

Limiter in Lag

SL

\(SL\)

LessThan

Blocks#

Name

Symbol

Type

Info

LG

\(LG\)

Lag

Transducer delay

SAT

\(SAT\)

ExcQuadSat

Field voltage saturation

LL

\(LL\)

LeadLag

Lead-lag compensator

HG

\(HG\)

HVGate

HVGate for under excitation

LA

\(LA\)

LagAntiWindup

Anti-windup lag

INT

\(INT\)

Integrator

Integrator

WF

\(WF\)

Washout

Feedback to input

Config Fields in [ESDC1A]

Option

Symbol

Value

Info

Accepted values

allow_adjust

1

allow adjusting upper or lower limits

(0, 1)

adjust_lower

0

adjust lower limit

(0, 1)

adjust_upper

1

adjust upper limit

(0, 1)

ESDC2A#

ESDC2A model.

This model is implemented as described in the PSS/E manual, except that the HVGate is not in use. Due to the HVGate and saturation function, the results are close to but different from TSAT.

Parameters#

Name

Symbol

Description

Default

Unit

Properties

idx

unique device idx

u

\(u\)

connection status

1

bool

name

device name

syn

Synchronous generator idx

mandatory

TR

\(T_R\)

Sensing time constant

0.010

p.u.

KA

\(K_A\)

Regulator gain

80

TA

\(T_A\)

Lag time constant in regulator

0.040

p.u.

TB

\(T_B\)

Lag time constant in lead-lag

1

p.u.

TC

\(T_C\)

Lead time constant in lead-lag

1

p.u.

VRMAX

\(V_{RMAX}\)

Max. exc. limit (0-unlimited)

7.300

p.u.

VRMIN

\(V_{RMIN}\)

Min. excitation limit

-7.300

p.u.

KE

\(K_E\)

Saturation feedback gain

1

p.u.

TE

\(T_E\)

Integrator time constant

0.800

p.u.

KF

\(K_F\)

Feedback gain

0.100

TF1

\(T_{F1}\)

Feedback washout time constant

1

p.u.

non_zero,non_negative

Switch

\(S_w\)

Switch that PSS/E did not implement

0

bool

E1

\(E_1\)

First saturation point

0

p.u.

SE1

\(S_{E1}\)

Value at first saturation point

0

p.u.

E2

\(E_2\)

Second saturation point

0

p.u.

SE2

\(S_{E2}\)

Value at second saturation point

0

p.u.

ug

\(u_g\)

Generator online status

0

bool

Sn

\(S_m\)

Rated power from generator

0

MVA

Vn

\(V_m\)

Rated voltage from generator

0

kV

bus

\(bus\)

Bus idx of the generators

0

Variables#

Name

Symbol

Type

Description

Unit

Properties

LG_y

\(LG_{y}\)

State

State in lag transfer function

v_str

LL_x

\(LL_{x}\)

State

State in lead-lag

v_str

LA_y

\(LA_{y}\)

State

State in lag TF

v_str

INT_y

\(INT_{y}\)

State

Integrator output

v_str

WF_x

\(WF_{x}\)

State

State in washout filter

v_str

omega

\(\omega\)

ExtState

Generator speed

v

\(v\)

Algeb

Input to exciter (bus v or Eterm)

v_str

vout

\(vout\)

Algeb

Exciter final output voltage

v_str

vref

\(vref\)

Algeb

Reference voltage input

p.u.

v_str

vi

\(vi\)

Algeb

Total input voltages

p.u.

v_str

LL_y

\(LL_{y}\)

Algeb

Output of lead-lag

v_str

UEL

\(UEL\)

Algeb

Interface var for under exc. limiter

v_str

HG_y

\(HG_{y}\)

Algeb

HVGate output

v_str

Se

\(Se\)

Algeb

saturation output

v_str

VFE

\(VFE\)

Algeb

Combined saturation feedback

p.u.

v_str

WF_y

\(WF_{y}\)

Algeb

Output of washout filter

v_str

vf

\(vf\)

ExtAlgeb

Excitation field voltage to generator

XadIfd

\(XadIfd\)

ExtAlgeb

Armature excitation current

a

\(a\)

ExtAlgeb

Bus voltage phase angle

vbus

\(vbus\)

ExtAlgeb

Bus voltage magnitude

Initialization Equations#

Name

Symbol

Type

Initial Value

LG_y

\(LG_{y}\)

State

\(v\)

LL_x

\(LL_{x}\)

State

\(vi\)

LA_y

\(LA_{y}\)

State

\(KA LL_{y}\)

INT_y

\(INT_{y}\)

State

\(vf_{0}\)

WF_x

\(WF_{x}\)

State

\(INT_{y}\)

omega

\(\omega\)

ExtState

v

\(v\)

Algeb

\(vbus\)

vout

\(vout\)

Algeb

\(ue vf_{0}\)

vref

\(vref\)

Algeb

\(v + \frac{vfe_{0}}{KA}\)

vi

\(vi\)

Algeb

\(\frac{vfe_{0}}{KA}\)

LL_y

\(LL_{y}\)

Algeb

\(vi\)

UEL

\(UEL\)

Algeb

\(0\)

HG_y

\(HG_{y}\)

Algeb

\(HG_{lt z0} UEL + HG_{lt z1} LL_{y}\)

Se

\(Se\)

Algeb

\(Se_{0}\)

VFE

\(VFE\)

Algeb

\(vfe_{0}\)

WF_y

\(WF_{y}\)

Algeb

\(0\)

vf

\(vf\)

ExtAlgeb

XadIfd

\(XadIfd\)

ExtAlgeb

a

\(a\)

ExtAlgeb

vbus

\(vbus\)

ExtAlgeb

Differential Equations#

Name

Symbol

Type

RHS of Equation "T x' = f(x, y)"

T (LHS)

LG_y

\(LG_{y}\)

State

\(- LG_{y} + v\)

\(T_R\)

LL_x

\(LL_{x}\)

State

\(- LL_{x} + vi\)

\(T_B\)

LA_y

\(LA_{y}\)

State

\(KA LL_{y} - LA_{y}\)

\(T_A\)

INT_y

\(INT_{y}\)

State

\(ue \left(LA_{y} - VFE\right)\)

\(T_E\)

WF_x

\(WF_{x}\)

State

\(INT_{y} - WF_{x}\)

\(T_{F1}\)

omega

\(\omega\)

ExtState

\(0\)

Algebraic Equations#

Name

Symbol

Type

RHS of Equation "0 = g(x, y)"

v

\(v\)

Algeb

\(- v + vbus\)

vout

\(vout\)

Algeb

\(INT_{y} - vout\)

vref

\(vref\)

Algeb

\(- vref + vref_{0}\)

vi

\(vi\)

Algeb

\(- WF_{y} - v - vi + vref\)

LL_y

\(LL_{y}\)

Algeb

\(LL_{LT1 z1} LL_{LT2 z1} \left(- LL_{x} + LL_{y}\right) + LL_{x} TB - LL_{y} TB + TC \left(- LL_{x} + vi\right)\)

UEL

\(UEL\)

Algeb

\(- UEL\)

HG_y

\(HG_{y}\)

Algeb

\(HG_{lt z0} UEL + HG_{lt z1} LL_{y} - HG_{y}\)

Se

\(Se\)

Algeb

\(SAT_{B} SL_{z0} \left(INT_{y} - SAT_{A}\right)^{2} - Se\)

VFE

\(VFE\)

Algeb

\(INT_{y} KE + Se - VFE\)

WF_y

\(WF_{y}\)

Algeb

\(KF \left(INT_{y} - WF_{x}\right) - TF_{1} WF_{y}\)

vf

\(vf\)

ExtAlgeb

\(ue \left(- vf_{0} + vout\right)\)

XadIfd

\(XadIfd\)

ExtAlgeb

\(0\)

a

\(a\)

ExtAlgeb

\(0\)

vbus

\(vbus\)

ExtAlgeb

\(0\)

Services#

Name

Symbol

Equation

Type

ue

\(u_e\)

\(u ug\)

ConstService

VRMAXc

\(VRMAXc\)

\(VRMAX - 999 _zVRM + 999\)

ConstService

SAT_E1

\(E^{1c}_{SAT}\)

\(E_{1}\)

ConstService

SAT_E2

\(E^{2c}_{SAT}\)

\(E_{2} - 2 SAT_{zSE2} + 2\)

ConstService

SAT_SE1

\(SE^{1c}_{SAT}\)

\(SE_{1}\)

ConstService

SAT_SE2

\(SE^{2c}_{SAT}\)

\(- 2 SAT_{zSE2} + SE_{2} + 2\)

ConstService

SAT_a

\(a_{SAT}\)

\(\sqrt{\frac{SAT_{E1} SAT_{SE1}}{SAT_{E2} SAT_{SE2}}} \left(\operatorname{Indicator}{\left(SAT_{SE2} > 0 \right)} + \operatorname{Indicator}{\left(SAT_{SE2} < 0 \right)}\right)\)

ConstService

SAT_A

\(A^q_{SAT}\)

\(SAT_{E2} - \frac{SAT_{E1} - SAT_{E2}}{SAT_{a} - 1}\)

ConstService

SAT_B

\(B^q_{SAT}\)

\(\frac{SAT_{E2} SAT_{SE2} \left(SAT_{a} - 1\right)^{2} \left(\operatorname{Indicator}{\left(SAT_{a} > 0 \right)} + \operatorname{Indicator}{\left(SAT_{a} < 0 \right)}\right)}{\left(SAT_{E1} - SAT_{E2}\right)^{2}}\)

ConstService

Se0

\(S_{e0}\)

\(SAT_{B} \left(SAT_{A} - vf_{0}\right)^{2} \operatorname{Indicator}{\left(vf_{0} > SAT_{A} \right)}\)

ConstService

vfe0

\(V_{FE0}\)

\(KE vf_{0} + Se_{0}\)

ConstService

vref0

\(V_{ref0}\)

\(vref\)

PostInitService

VRU

\(V_T V_{RMAX}\)

\(VRMAXc v\)

VarService

VRL

\(V_T V_{RMIN}\)

\(VRMIN v\)

VarService

Discretes#

Name

Symbol

Type

Info

LL_LT1

\(LT_{LL}\)

LessThan

LL_LT2

\(LT_{LL}\)

LessThan

HG_lt

\(None_{HG}\)

LessThan

LA_lim

\(lim_{LA}\)

AntiWindup

Limiter in Lag

SL

\(SL\)

LessThan

Blocks#

Name

Symbol

Type

Info

LG

\(LG\)

Lag

Transducer delay

SAT

\(SAT\)

ExcQuadSat

Field voltage saturation

LL

\(LL\)

LeadLag

Lead-lag compensator

HG

\(HG\)

HVGate

HVGate for under excitation

LA

\(LA\)

LagAntiWindup

Anti-windup lag

INT

\(INT\)

Integrator

Integrator

WF

\(WF\)

Washout

Feedback to input

Config Fields in [ESDC2A]

Option

Symbol

Value

Info

Accepted values

allow_adjust

1

allow adjusting upper or lower limits

(0, 1)

adjust_lower

0

adjust lower limit

(0, 1)

adjust_upper

1

adjust upper limit

(0, 1)

EXST1#

EXST1-type static excitation system.

Parameters#

Name

Symbol

Description

Default

Unit

Properties

idx

unique device idx

u

\(u\)

connection status

1

bool

name

device name

syn

Synchronous generator idx

mandatory

TR

\(T_R\)

Measurement delay

0.010

VIMAX

\(V_{IMAX}\)

Max. input voltage

0.200

VIMIN

\(V_{IMIN}\)

Min. input voltage

0

TC

\(T_C\)

LL numerator

1

TB

\(T_B\)

LL denominator

1

KA

\(K_A\)

Regulator gain

80

TA

\(T_A\)

Regulator delay

0.050

VRMAX

\(V_{RMAX}\)

Max. regulator output

8

VRMIN

\(V_{RMIN}\)

Min. regulator output

-3

KC

\(K_C\)

Coef. for Ifd

0.200

KF

\(K_F\)

Feedback gain

0.100

TF

\(T_F\)

Feedback delay

1

non_zero,non_negative

ug

\(u_g\)

Generator online status

0

bool

Sn

\(S_m\)

Rated power from generator

0

MVA

Vn

\(V_m\)

Rated voltage from generator

0

kV

bus

\(bus\)

Bus idx of the generators

0

Variables#

Name

Symbol

Type

Description

Unit

Properties

LG_y

\(LG_{y}\)

State

State in lag transfer function

v_str

LL_x

\(LL_{x}\)

State

State in lead-lag

v_str

LR_y

\(LR_{y}\)

State

State in lag transfer function

v_str

WF_x

\(WF_{x}\)

State

State in washout filter

v_str

omega

\(\omega\)

ExtState

Generator speed

v

\(v\)

Algeb

Input to exciter (bus v or Eterm)

v_str

vout

\(vout\)

Algeb

Exciter final output voltage

v_str

vref

\(vref\)

Algeb

Reference voltage input

p.u.

v_str

vi

\(vi\)

Algeb

Total input voltages

p.u.

v_str

vl

\(vl\)

Algeb

Input after limiter

v_str

LL_y

\(LL_{y}\)

Algeb

Output of lead-lag

v_str

WF_y

\(WF_{y}\)

Algeb

Output of washout filter

v_str

vfmax

\(vfmax\)

Algeb

Upper bound of output limiter

v_str

vfmin

\(vfmin\)

Algeb

Lower bound of output limiter

v_str

vf

\(vf\)

ExtAlgeb

Excitation field voltage to generator

XadIfd

\(XadIfd\)

ExtAlgeb

Armature excitation current

a

\(a\)

ExtAlgeb

Bus voltage phase angle

vbus

\(vbus\)

ExtAlgeb

Bus voltage magnitude

Initialization Equations#

Name

Symbol

Type

Initial Value

LG_y

\(LG_{y}\)

State

\(v\)

LL_x

\(LL_{x}\)

State

\(vl\)

LR_y

\(LR_{y}\)

State

\(KA LL_{y}\)

WF_x

\(WF_{x}\)

State

\(LR_{y}\)

omega

\(\omega\)

ExtState

v

\(v\)

Algeb

\(vbus\)

vout

\(vout\)

Algeb

\(ue vf_{0}\)

vref

\(vref\)

Algeb

\(v + \frac{vf_{0}}{KA}\)

vi

\(vi\)

Algeb

\(\frac{vf_{0}}{KA}\)

vl

\(vl\)

Algeb

\(HLI_{zi} vi + HLI_{zl} VIMIN + HLI_{zu} VIMAX\)

LL_y

\(LL_{y}\)

Algeb

\(vl\)

WF_y

\(WF_{y}\)

Algeb

\(0\)

vfmax

\(vfmax\)

Algeb

\(- KC XadIfd + VRMAX\)

vfmin

\(vfmin\)

Algeb

\(- KC XadIfd + VRMIN\)

vf

\(vf\)

ExtAlgeb

XadIfd

\(XadIfd\)

ExtAlgeb

a

\(a\)

ExtAlgeb

vbus

\(vbus\)

ExtAlgeb

Differential Equations#

Name

Symbol

Type

RHS of Equation "T x' = f(x, y)"

T (LHS)

LG_y

\(LG_{y}\)

State

\(- LG_{y} + v\)

\(T_R\)

LL_x

\(LL_{x}\)

State

\(- LL_{x} + vl\)

\(T_B\)

LR_y

\(LR_{y}\)

State

\(KA LL_{y} - LR_{y}\)

\(T_A\)

WF_x

\(WF_{x}\)

State

\(LR_{y} - WF_{x}\)

\(T_F\)

omega

\(\omega\)

ExtState

\(0\)

Algebraic Equations#

Name

Symbol

Type

RHS of Equation "0 = g(x, y)"

v

\(v\)

Algeb

\(- v + vbus\)

vout

\(vout\)

Algeb

\(ue \left(HLR_{zi} LR_{y} + HLR_{zl} vfmin + HLR_{zu} vfmax\right) - vout\)

vref

\(vref\)

Algeb

\(- vref + vref_{0}\)

vi

\(vi\)

Algeb

\(- LG_{y} - WF_{y} - vi + vref\)

vl

\(vl\)

Algeb

\(HLI_{zi} vi + HLI_{zl} VIMIN + HLI_{zu} VIMAX - vl\)

LL_y

\(LL_{y}\)

Algeb

\(LL_{LT1 z1} LL_{LT2 z1} \left(- LL_{x} + LL_{y}\right) + LL_{x} TB - LL_{y} TB + TC \left(- LL_{x} + vl\right)\)

WF_y

\(WF_{y}\)

Algeb

\(KF \left(LR_{y} - WF_{x}\right) - TF WF_{y}\)

vfmax

\(vfmax\)

Algeb

\(- KC XadIfd + VRMAX - vfmax\)

vfmin

\(vfmin\)

Algeb

\(- KC XadIfd + VRMIN - vfmin\)

vf

\(vf\)

ExtAlgeb

\(ue \left(- vf_{0} + vout\right)\)

XadIfd

\(XadIfd\)

ExtAlgeb

\(0\)

a

\(a\)

ExtAlgeb

\(0\)

vbus

\(vbus\)

ExtAlgeb

\(0\)

Services#

Name

Symbol

Equation

Type

ue

\(u_e\)

\(u ug\)

ConstService

vref0

\(V_{ref0}\)

\(vref\)

PostInitService

Discretes#

Name

Symbol

Type

Info

HLI

\(HLI\)

HardLimiter

Hard limiter on input

LL_LT1

\(LT_{LL}\)

LessThan

LL_LT2

\(LT_{LL}\)

LessThan

HLR

\(HLR\)

HardLimiter

Hard limiter on regulator output

Blocks#

Name

Symbol

Type

Info

LG

\(LG\)

Lag

Sensing delay

LL

\(LL\)

LeadLag

Lead-lag compensator

LR

\(LR\)

Lag

Regulator

WF

\(WF\)

Washout

Stablizing circuit feedback

Config Fields in [EXST1]

Option

Symbol

Value

Info

Accepted values

allow_adjust

1

allow adjusting upper or lower limits

(0, 1)

adjust_lower

0

adjust lower limit

(0, 1)

adjust_upper

1

adjust upper limit

(0, 1)

ESST3A#

Static exciter type 3A model

Parameters#

Name

Symbol

Description

Default

Unit

Properties

idx

unique device idx

u

\(u\)

connection status

1

bool

name

device name

syn

Synchronous generator idx

mandatory

TR

\(T_R\)

Sensing time constant

0.010

p.u.

VIMAX

\(V_{IMAX}\)

Max. input voltage

0.800

VIMIN

\(V_{IMIN}\)

Min. input voltage

-0.100

KM

\(K_M\)

Forward gain constant

500

TC

\(T_C\)

Lead time constant in lead-lag

3

TB

\(T_B\)

Lag time constant in lead-lag

15

KA

\(K_A\)

Gain in anti-windup lag TF

50

TA

\(T_A\)

Lag time constant in anti-windup lag

0.100

VRMAX

\(V_{RMAX}\)

Maximum excitation limit

8

p.u.

VRMIN

\(V_{RMIN}\)

Minimum excitation limit

0

p.u.

KG

\(K_G\)

Feedback gain of inner field regulator

1

KP

\(K_P\)

Potential circuit gain coeff.

4

KI

\(K_I\)

Potential circuit gain coeff.

0.100

VBMAX

\(V_{BMAX}\)

VB upper limit

18

p.u.

KC

\(K_C\)

Rectifier loading factor proportional to commutating reactance

0.100

XL

\(X_L\)

Potential source reactance

0.010

VGMAX

\(V_{GMAX}\)

VG upper limit

4

p.u.

THETAP

\(\theta_P\)

Rectifier firing angle

0

degree

TM

\(K_C\)

Inner field regulator forward time constant

0.100

VMMAX

\(V_{MMAX}\)

Maximum VM limit

1

p.u.

VMMIN

\(V_{RMIN}\)

Minimum VM limit

0.100

p.u.

ug

\(u_g\)

Generator online status

0

bool

Sn

\(S_m\)

Rated power from generator

0

MVA

Vn

\(V_m\)

Rated voltage from generator

0

kV

bus

\(bus\)

Bus idx of the generators

0

Variables#

Name

Symbol

Type

Description

Unit

Properties

LG_y

\(LG_{y}\)

State

State in lag transfer function

v_str

LL_x

\(LL_{x}\)

State

State in lead-lag

v_str

LAW1_y

\(LAW_{1 y}\)

State

State in lag TF

v_str

LAW2_y

\(LAW_{2 y}\)

State

State in lag TF

v_str

omega

\(\omega\)

ExtState

Generator speed

v

\(v\)

Algeb

Input to exciter (bus v or Eterm)

v_str

vout

\(vout\)

Algeb

Exciter final output voltage

v_str

UEL

\(UEL\)

Algeb

Interface var for under exc. limiter

v_str

IN

\(IN\)

Algeb

Input to FEX

v_str

FEX_y

\(FEX_{y}\)

Algeb

Output of piecewise

v_str

VB_x

\(VB_{x}\)

Algeb

Value before limiter

v_str

VB_y

\(VB_{y}\)

Algeb

Output after limiter and post gain

v_str

VG_x

\(VG_{x}\)

Algeb

Value before limiter

v_str

VG_y

\(VG_{y}\)

Algeb

Output after limiter and post gain

v_str

vrs

\(vrs\)

Algeb

VR subtract feedback VG

v_str

vref

\(vref\)

Algeb

Reference voltage input

p.u.

v_str

vi

\(vi\)

Algeb

Total input voltages

p.u.

v_str

vil

\(vil\)

Algeb

Input voltage after limit

v_str

HG_y

\(HG_{y}\)

Algeb

HVGate output

v_str

LL_y

\(LL_{y}\)

Algeb

Output of lead-lag

v_str

vf

\(vf\)

ExtAlgeb

Excitation field voltage to generator

XadIfd

\(XadIfd\)

ExtAlgeb

Armature excitation current

a

\(a\)

ExtAlgeb

Bus voltage phase angle

vbus

\(vbus\)

ExtAlgeb

Bus voltage magnitude

vd

\(vd\)

ExtAlgeb

d-axis machine voltage

vq

\(vq\)

ExtAlgeb

q-axis machine voltage

Id

\(Id\)

ExtAlgeb

d-axis machine current

Iq

\(Iq\)

ExtAlgeb

q-axis machine current

Initialization Equations#

Name

Symbol

Type

Initial Value

LG_y

\(LG_{y}\)

State

\(v\)

LL_x

\(LL_{x}\)

State

\(HG_{y}\)

LAW1_y

\(LAW_{1 y}\)

State

\(KA LL_{y}\)

LAW2_y

\(LAW_{2 y}\)

State

\(KM vrs\)

omega

\(\omega\)

ExtState

v

\(v\)

Algeb

\(vbus\)

vout

\(vout\)

Algeb

\(ue vf_{0}\)

UEL

\(UEL\)

Algeb

\(UEL_{0}\)

IN

\(IN\)

Algeb

\(\operatorname{safe}_{div}{\left(KC XadIfd,VE \right)}\)

FEX_y

\(FEX_{y}\)

Algeb

\(\operatorname{FixPiecewise}{\left(\left( 1, \ IN \leq 0\right),\left( 1 - 0.577 IN, \ IN \leq 0.433\right),\left( \sqrt{0.75 - IN^{2}}, \ IN \leq 0.75\right),\left( 1.732 - 1.732 IN, \ IN \leq 1\right),\left( 0, \ \text{True}\right) \right)}\)

VB_x

\(VB_{x}\)

Algeb

\(FEX_{y} VE\)

VB_y

\(VB_{y}\)

Algeb

\(VBMAX VB_{lim zu} + VB_{lim zi} VB_{x}\)

VG_x

\(VG_{x}\)

Algeb

\(KG vout\)

VG_y

\(VG_{y}\)

Algeb

\(VGMAX VG_{lim zu} + VG_{lim zi} VG_{x}\)

vrs

\(vrs\)

Algeb

\(\frac{\operatorname{safe}_{div}{\left(vf_{0},VB_{y} \right)}}{KM}\)

vref

\(vref\)

Algeb

\(v + \frac{VG_{y} + vrs}{KA}\)

vi

\(vi\)

Algeb

\(- v + vref\)

vil

\(vil\)

Algeb

\(HLI_{zi} vi + HLI_{zl} VIMIN + HLI_{zu} VIMAX\)

HG_y

\(HG_{y}\)

Algeb

\(HG_{lt z0} UEL + HG_{lt z1} vil\)

LL_y

\(LL_{y}\)

Algeb

\(HG_{y}\)

vf

\(vf\)

ExtAlgeb

XadIfd

\(XadIfd\)

ExtAlgeb

a

\(a\)

ExtAlgeb

vbus

\(vbus\)

ExtAlgeb

vd

\(vd\)

ExtAlgeb

vq

\(vq\)

ExtAlgeb

Id

\(Id\)

ExtAlgeb

Iq

\(Iq\)

ExtAlgeb

Differential Equations#

Name

Symbol

Type

RHS of Equation "T x' = f(x, y)"

T (LHS)

LG_y

\(LG_{y}\)

State

\(- LG_{y} + v\)

\(T_R\)

LL_x

\(LL_{x}\)

State

\(HG_{y} - LL_{x}\)

\(T_B\)

LAW1_y

\(LAW_{1 y}\)

State

\(KA LL_{y} - LAW_{1 y}\)

\(T_A\)

LAW2_y

\(LAW_{2 y}\)

State

\(KM vrs - LAW_{2 y}\)

\(K_C\)

omega

\(\omega\)

ExtState

\(0\)

Algebraic Equations#

Name

Symbol

Type

RHS of Equation "0 = g(x, y)"

v

\(v\)

Algeb

\(- v + vbus\)

vout

\(vout\)

Algeb

\(LAW_{2 y} VB_{y} ue - vout\)

UEL

\(UEL\)

Algeb

\(- UEL + UEL_{0}\)

IN

\(IN\)

Algeb

\(ue \left(- IN VE + KC XadIfd\right)\)

FEX_y

\(FEX_{y}\)

Algeb

\(- FEX_{y} + \operatorname{FixPiecewise}{\left(\left( 1, \ IN \leq 0\right),\left( 1 - 0.577 IN, \ IN \leq 0.433\right),\left( \sqrt{0.75 - IN^{2}}, \ IN \leq 0.75\right),\left( 1.732 - 1.732 IN, \ IN \leq 1\right),\left( 0, \ \text{True}\right) \right)}\)

VB_x

\(VB_{x}\)

Algeb

\(FEX_{y} VE - VB_{x}\)

VB_y

\(VB_{y}\)

Algeb

\(VBMAX VB_{lim zu} + VB_{lim zi} VB_{x} - VB_{y}\)

VG_x

\(VG_{x}\)

Algeb

\(KG vout - VG_{x}\)

VG_y

\(VG_{y}\)

Algeb

\(VGMAX VG_{lim zu} + VG_{lim zi} VG_{x} - VG_{y}\)

vrs

\(vrs\)

Algeb

\(LAW_{1 y} - VG_{y} - vrs\)

vref

\(vref\)

Algeb

\(- vref + vref_{0}\)

vi

\(vi\)

Algeb

\(- LG_{y} - vi + vref\)

vil

\(vil\)

Algeb

\(HLI_{zi} vi + HLI_{zl} VIMIN + HLI_{zu} VIMAX - vil\)

HG_y

\(HG_{y}\)

Algeb

\(HG_{lt z0} UEL + HG_{lt z1} vil - HG_{y}\)

LL_y

\(LL_{y}\)

Algeb

\(LL_{LT1 z1} LL_{LT2 z1} \left(- LL_{x} + LL_{y}\right) + LL_{x} TB - LL_{y} TB + TC \left(HG_{y} - LL_{x}\right)\)

vf

\(vf\)

ExtAlgeb

\(ue \left(- vf_{0} + vout\right)\)

XadIfd

\(XadIfd\)

ExtAlgeb

\(0\)

a

\(a\)

ExtAlgeb

\(0\)

vbus

\(vbus\)

ExtAlgeb

\(0\)

vd

\(vd\)

ExtAlgeb

\(0\)

vq

\(vq\)

ExtAlgeb

\(0\)

Id

\(Id\)

ExtAlgeb

\(0\)

Iq

\(Iq\)

ExtAlgeb

\(0\)

Services#

Name

Symbol

Equation

Type

ue

\(u_e\)

\(u ug\)

ConstService

KPC

\(K_{PC}\)

\(KP e^{i \operatorname{radians}{\left(THETAP \right)}}\)

ConstService

UEL0

\(U_{EL0}\)

\(-9999\)

ConstService

VE

\(V_E\)

\(\left|{KPC \left(vd + i vq\right) + i \left(Id + i Iq\right) \left(KI + KPC XL\right)}\right|\)

VarService

vref0

\(V_{ref0}\)

\(vref\)

PostInitService

Discretes#

Name

Symbol

Type

Info

VB_lim

\(lim_{VB}\)

HardLimiter

VG_lim

\(lim_{VG}\)

HardLimiter

HG_lt

\(None_{HG}\)

LessThan

LL_LT1

\(LT_{LL}\)

LessThan

LL_LT2

\(LT_{LL}\)

LessThan

LAW1_lim

\(lim_{LAW1}\)

AntiWindup

Limiter in Lag

HLI

\(HLI\)

HardLimiter

Input limiter

LAW2_lim

\(lim_{LAW2}\)

AntiWindup

Limiter in Lag

Blocks#

Name

Symbol

Type

Info

LG

\(LG\)

Lag

Voltage transducer

FEX

\(FEX\)

Piecewise

Piecewise function FEX

VB

\(VB\)

GainLimiter

VB with limiter

VG

\(VG\)

GainLimiter

Feedback gain with HL

HG

\(HG\)

HVGate

HVGate for under excitation

LL

\(LL\)

LeadLag

Regulator

LAW1

\(LAW1\)

LagAntiWindup

Lag AW on VR

LAW2

\(LAW2\)

LagAntiWindup

Lag AW on VM

Config Fields in [ESST3A]

Option

Symbol

Value

Info

Accepted values

allow_adjust

1

allow adjusting upper or lower limits

(0, 1)

adjust_lower

0

adjust lower limit

(0, 1)

adjust_upper

1

adjust upper limit

(0, 1)

SEXS#

Simplified Excitation System

Parameters#

Name

Symbol

Description

Default

Unit

Properties

idx

unique device idx

u

\(u\)

connection status

1

bool

name

device name

syn

Synchronous generator idx

mandatory

TATB

\(T_A/T_B\)

Time constant TA/TB

0.400

TB

\(T_B\)

Time constant TB in LL

5

K

\(K\)

Gain

20

non_zero

TE

\(T_E\)

AW Lag time constant

1

EMIN

\(E_{MIN}\)

lower limit

-99

EMAX

\(E_{MAX}\)

upper limit

99

ug

\(u_g\)

Generator online status

0

bool

Sn

\(S_m\)

Rated power from generator

0

MVA

Vn

\(V_m\)

Rated voltage from generator

0

kV

bus

\(bus\)

Bus idx of the generators

0

Variables#

Name

Symbol

Type

Description

Unit

Properties

LL_x

\(LL_{x}\)

State

State in lead-lag

v_str

LAW_y

\(LAW_{y}\)

State

State in lag TF

v_str

omega

\(\omega\)

ExtState

Generator speed

v

\(v\)

Algeb

Input to exciter (bus v or Eterm)

v_str

vout

\(vout\)

Algeb

Exciter final output voltage

v_str

vref

\(vref\)

Algeb

Reference voltage input

p.u.

v_str

vi

\(vi\)

Algeb

Total input voltages

p.u.

v_str

LL_y

\(LL_{y}\)

Algeb

Output of lead-lag

v_str

vf

\(vf\)

ExtAlgeb

Excitation field voltage to generator

XadIfd

\(XadIfd\)

ExtAlgeb

Armature excitation current

a

\(a\)

ExtAlgeb

Bus voltage phase angle

vbus

\(vbus\)

ExtAlgeb

Bus voltage magnitude

Initialization Equations#

Name

Symbol

Type

Initial Value

LL_x

\(LL_{x}\)

State

\(vi\)

LAW_y

\(LAW_{y}\)

State

\(K LL_{y}\)

omega

\(\omega\)

ExtState

v

\(v\)

Algeb

\(vbus\)

vout

\(vout\)

Algeb

\(ue vf_{0}\)

vref

\(vref\)

Algeb

\(v + \frac{vf_{0}}{K}\)

vi

\(vi\)

Algeb

\(\frac{vf_{0}}{K}\)

LL_y

\(LL_{y}\)

Algeb

\(vi\)

vf

\(vf\)

ExtAlgeb

XadIfd

\(XadIfd\)

ExtAlgeb

a

\(a\)

ExtAlgeb

vbus

\(vbus\)

ExtAlgeb

Differential Equations#

Name

Symbol

Type

RHS of Equation "T x' = f(x, y)"

T (LHS)

LL_x

\(LL_{x}\)

State

\(- LL_{x} + vi\)

\(T_B\)

LAW_y

\(LAW_{y}\)

State

\(K LL_{y} - LAW_{y}\)

\(T_E\)

omega

\(\omega\)

ExtState

\(0\)

Algebraic Equations#

Name

Symbol

Type

RHS of Equation "0 = g(x, y)"

v

\(v\)

Algeb

\(- v + vbus\)

vout

\(vout\)

Algeb

\(LAW_{y} ue - vout\)

vref

\(vref\)

Algeb

\(- vref + vref_{0}\)

vi

\(vi\)

Algeb

\(- v - vi + vref\)

LL_y

\(LL_{y}\)

Algeb

\(LL_{LT1 z1} LL_{LT2 z1} \left(- LL_{x} + LL_{y}\right) + LL_{x} TB - LL_{y} TB + TA \left(- LL_{x} + vi\right)\)

vf

\(vf\)

ExtAlgeb

\(ue \left(- vf_{0} + vout\right)\)

XadIfd

\(XadIfd\)

ExtAlgeb

\(0\)

a

\(a\)

ExtAlgeb

\(0\)

vbus

\(vbus\)

ExtAlgeb

\(0\)

Services#

Name

Symbol

Equation

Type

ue

\(u_e\)

\(u ug\)

ConstService

TA

\(TA\)

\(TATB TB\)

ConstService

vref0

\(V_{ref0}\)

\(vref\)

PostInitService

Discretes#

Name

Symbol

Type

Info

LL_LT1

\(LT_{LL}\)

LessThan

LL_LT2

\(LT_{LL}\)

LessThan

LAW_lim

\(lim_{LAW}\)

AntiWindup

Limiter in Lag

Blocks#

Name

Symbol

Type

Info

LL

\(LL\)

LeadLag

LAW

\(LAW\)

LagAntiWindup

Config Fields in [SEXS]

Option

Symbol

Value

Info

Accepted values

allow_adjust

1

allow adjusting upper or lower limits

(0, 1)

adjust_lower

0

adjust lower limit

(0, 1)

adjust_upper

1

adjust upper limit

(0, 1)

IEEET1#

IEEET1 exciter.

Parameters#

Name

Symbol

Description

Default

Unit

Properties

idx

unique device idx

u

\(u\)

connection status

1

bool

name

device name

syn

Synchronous generator idx

mandatory

TR

\(T_R\)

Sensing time constant

0.020

p.u.

KA

\(K_A\)

Regulator gain

5

p.u.

TA

\(T_A\)

Lag time constant in anti-windup lag

0.040

p.u.

VRMAX

\(V_{RMAX}\)

Maximum excitation limit

7.300

p.u.

VRMIN

\(V_{RMIN}\)

Minimum excitation limit

-7.300

p.u.

KE

\(K_E\)

Gain added to saturation

1

p.u.

TE

\(T_E\)

Exciter integrator time constant

0.800

p.u.

KF

\(K_F\)

Feedback gain

0.100

TF

\(T_F\)

Feedback delay

1

non_zero,non_negative

Switch

\(S_w\)

Switch unused in PSS/E

0

bool

E1

\(E_1\)

First saturation point

0

p.u.

SE1

\(S_{E1}\)

Value at first saturation point

0

p.u.

E2

\(E_2\)

Second saturation point

1

p.u.

SE2

\(S_{E2}\)

Value at second saturation point

1

p.u.

ug

\(u_g\)

Generator online status

0

bool

Sn

\(S_m\)

Rated power from generator

0

MVA

Vn

\(V_m\)

Rated voltage from generator

0

kV

bus

\(bus\)

Bus idx of the generators

0

Variables#

Name

Symbol

Type

Description

Unit

Properties

LG_y

\(LG_{y}\)

State

State in lag transfer function

v_str

LA_y

\(LA_{y}\)

State

State in lag TF

v_str

INT_y

\(INT_{y}\)

State

Integrator output

v_str

WF_x

\(WF_{x}\)

State

State in washout filter

v_str

omega

\(\omega\)

ExtState

Generator speed

v

\(v\)

Algeb

Input to exciter (bus v or Eterm)

v_str

vout

\(vout\)

Algeb

Exciter final output voltage

v_str

vref

\(vref\)

Algeb

Reference voltage input

p.u.

v_str

vi

\(vi\)

Algeb

Total input voltages

p.u.

v_str

VFE

\(VFE\)

Algeb

Combined saturation feedback

p.u.

v_str

Se

\(Se\)

Algeb

saturation output

v_str

WF_y

\(WF_{y}\)

Algeb

Output of washout filter

v_str

vf

\(vf\)

ExtAlgeb

Excitation field voltage to generator

XadIfd

\(XadIfd\)

ExtAlgeb

Armature excitation current

a

\(a\)

ExtAlgeb

Bus voltage phase angle

vbus

\(vbus\)

ExtAlgeb

Bus voltage magnitude

Initialization Equations#

Name

Symbol

Type

Initial Value

LG_y

\(LG_{y}\)

State

\(v\)

LA_y

\(LA_{y}\)

State

\(KA ue \left(- WF_{y} + vi\right)\)

INT_y

\(INT_{y}\)

State

\(vf_{0}\)

WF_x

\(WF_{x}\)

State

\(vout\)

omega

\(\omega\)

ExtState

v

\(v\)

Algeb

\(vbus\)

vout

\(vout\)

Algeb

\(ue vf_{0}\)

vref

\(vref\)

Algeb

\(v + vb_{0}\)

vi

\(vi\)

Algeb

\(- v + vref\)

VFE

\(VFE\)

Algeb

\(vfe_{0}\)

Se

\(Se\)

Algeb

\(Se_{0}\)

WF_y

\(WF_{y}\)

Algeb

\(0\)

vf

\(vf\)

ExtAlgeb

XadIfd

\(XadIfd\)

ExtAlgeb

a

\(a\)

ExtAlgeb

vbus

\(vbus\)

ExtAlgeb

Differential Equations#

Name

Symbol

Type

RHS of Equation "T x' = f(x, y)"

T (LHS)

LG_y

\(LG_{y}\)

State

\(- LG_{y} + v\)

\(T_R\)

LA_y

\(LA_{y}\)

State

\(KA ue \left(- WF_{y} + vi\right) - LA_{y}\)

\(T_A\)

INT_y

\(INT_{y}\)

State

\(ue \left(LA_{y} - VFE\right)\)

\(T_E\)

WF_x

\(WF_{x}\)

State

\(- WF_{x} + vout\)

\(T_F\)

omega

\(\omega\)

ExtState

\(0\)

Algebraic Equations#

Name

Symbol

Type

RHS of Equation "0 = g(x, y)"

v

\(v\)

Algeb

\(- v + vbus\)

vout

\(vout\)

Algeb

\(ue \left(INT_{y} - vout\right)\)

vref

\(vref\)

Algeb

\(- vref + vref_{0}\)

vi

\(vi\)

Algeb

\(ue \left(- LG_{y} - vi + vref\right)\)

VFE

\(VFE\)

Algeb

\(ue \left(INT_{y} KE + Se - VFE\right)\)

Se

\(Se\)

Algeb

\(SAT_{B} SL_{z0} \left(INT_{y} - SAT_{A}\right)^{2} - Se\)

WF_y

\(WF_{y}\)

Algeb

\(KF \left(- WF_{x} + vout\right) - TF WF_{y}\)

vf

\(vf\)

ExtAlgeb

\(ue \left(- vf_{0} + vout\right)\)

XadIfd

\(XadIfd\)

ExtAlgeb

\(0\)

a

\(a\)

ExtAlgeb

\(0\)

vbus

\(vbus\)

ExtAlgeb

\(0\)

Services#

Name

Symbol

Equation

Type

ue

\(u_e\)

\(u ug\)

ConstService

VRMAXc

\(VRMAXc\)

\(VRMAX - 999 _zVRM + 999\)

ConstService

SAT_E1

\(E^{1c}_{SAT}\)

\(E_{1}\)

ConstService

SAT_E2

\(E^{2c}_{SAT}\)

\(E_{2} - 2 SAT_{zSE2} + 2\)

ConstService

SAT_SE1

\(SE^{1c}_{SAT}\)

\(SE_{1}\)

ConstService

SAT_SE2

\(SE^{2c}_{SAT}\)

\(- 2 SAT_{zSE2} + SE_{2} + 2\)

ConstService

SAT_a

\(a_{SAT}\)

\(\sqrt{\frac{SAT_{E1} SAT_{SE1}}{SAT_{E2} SAT_{SE2}}} \left(\operatorname{Indicator}{\left(SAT_{SE2} > 0 \right)} + \operatorname{Indicator}{\left(SAT_{SE2} < 0 \right)}\right)\)

ConstService

SAT_A

\(A^q_{SAT}\)

\(SAT_{E2} - \frac{SAT_{E1} - SAT_{E2}}{SAT_{a} - 1}\)

ConstService

SAT_B

\(B^q_{SAT}\)

\(\frac{SAT_{E2} SAT_{SE2} \left(SAT_{a} - 1\right)^{2} \left(\operatorname{Indicator}{\left(SAT_{a} > 0 \right)} + \operatorname{Indicator}{\left(SAT_{a} < 0 \right)}\right)}{\left(SAT_{E1} - SAT_{E2}\right)^{2}}\)

ConstService

Se0

\(S_{e0}\)

\(SAT_{B} \left(SAT_{A} - vf_{0}\right)^{2} \operatorname{Indicator}{\left(vf_{0} > SAT_{A} \right)}\)

ConstService

vr0

\(V_{r0}\)

\(KE vf_{0} + Se_{0}\)

ConstService

vb0

\(V_{b0}\)

\(\frac{vr_{0}}{KA}\)

ConstService

vfe0

\(V_{FE0}\)

\(KE vf_{0} + Se_{0}\)

ConstService

vref0

\(V_{ref0}\)

\(vref\)

PostInitService

Discretes#

Name

Symbol

Type

Info

LA_lim

\(lim_{LA}\)

AntiWindup

Limiter in Lag

SL

\(SL\)

LessThan

Blocks#

Name

Symbol

Type

Info

SAT

\(SAT\)

ExcQuadSat

Field voltage saturation

LG

\(LG\)

Lag

Sensing delay

LA

\(LA\)

LagAntiWindup

Anti-windup lag

INT

\(INT\)

Integrator

Integrator

WF

\(WF\)

Washout

Stablizing circuit feedback

Config Fields in [IEEET1]

Option

Symbol

Value

Info

Accepted values

allow_adjust

1

allow adjusting upper or lower limits

(0, 1)

adjust_lower

0

adjust lower limit

(0, 1)

adjust_upper

1

adjust upper limit

(0, 1)

EXAC1#

EXAC1 model.

Ref: https://www.powerworld.com/WebHelp/Content/TransientModels_HTML/Exciter%20EXAC1.htm

Parameters#

Name

Symbol

Description

Default

Unit

Properties

idx

unique device idx

u

\(u\)

connection status

1

bool

name

device name

syn

Synchronous generator idx

mandatory

TR

\(T_R\)

Sensing time constant

0.010

p.u.

TB

\(T_B\)

Lag time constant in lead-lag

1

p.u.

TC

\(T_C\)

Lead time constant in lead-lag

1

p.u.

KA

\(K_A\)

Regulator gain

80

TA

\(T_A\)

Lag time constant in regulator

0.040

p.u.

VRMAX

\(V_{RMAX}\)

Maximum regulator output

8

p.u.

VRMIN

\(V_{RMIN}\)

Minimum regulator output

0

p.u.

TE

\(T_E\)

Exciter integrator time constant

0.800

p.u.

non_negative

KF

\(K_F\)

Feedback gain

0.100

TF

\(T_F\)

Feedback delay

1

non_zero,non_negative

KC

\(K_C\)

Rectifier loading factor proportional to commutating reactance

0.100

KD

\(K_C\)

Ifd feedback gain

0

KE

\(K_E\)

Saturation feedback gain

1

p.u.

E1

\(E_1\)

First saturation point

0

p.u.

SE1

\(S_{E1}\)

Value at first saturation point

0

p.u.

E2

\(E_2\)

Second saturation point

1

p.u.

SE2

\(S_{E2}\)

Value at second saturation point

1

p.u.

ug

\(u_g\)

Generator online status

0

bool

Sn

\(S_m\)

Rated power from generator

0

MVA

Vn

\(V_m\)

Rated voltage from generator

0

kV

bus

\(bus\)

Bus idx of the generators

0

Variables#

Name

Symbol

Type

Description

Unit

Properties

LG_y

\(LG_{y}\)

State

State in lag transfer function

v_str

LL_x

\(LL_{x}\)

State

State in lead-lag

v_str

LA_y

\(LA_{y}\)

State

State in lag TF

v_str

INT_y

\(INT_{y}\)

State

Integrator output

v_str,v_iter

WF_x

\(WF_{x}\)

State

State in washout filter

v_str

omega

\(\omega\)

ExtState

Generator speed

v

\(v\)

Algeb

Input to exciter (bus v or Eterm)

v_str

vout

\(vout\)

Algeb

Exciter final output voltage

v_str

IN

\(IN\)

Algeb

Input to FEX

v_str,v_iter

FEX_y

\(FEX_{y}\)

Algeb

Output of piecewise

v_str,v_iter

vi

\(vi\)

Algeb

Total input voltages

p.u.

v_str

LL_y

\(LL_{y}\)

Algeb

Output of lead-lag

v_str

Se

\(Se\)

Algeb

saturation output

v_str

VFE

\(VFE\)

Algeb

Combined saturation feedback

p.u.

v_str

vref

\(vref\)

Algeb

Reference voltage input

p.u.

v_str

WF_y

\(WF_{y}\)

Algeb

Output of washout filter

v_str

vf

\(vf\)

ExtAlgeb

Excitation field voltage to generator

XadIfd

\(XadIfd\)

ExtAlgeb

Armature excitation current

a

\(a\)

ExtAlgeb

Bus voltage phase angle

vbus

\(vbus\)

ExtAlgeb

Bus voltage magnitude

Initialization Equations#

Name

Symbol

Type

Initial Value

LG_y

\(LG_{y}\)

State

\(v\)

LL_x

\(LL_{x}\)

State

\(vi\)

LA_y

\(LA_{y}\)

State

\(KA LL_{y}\)

INT_y

\(INT_{y}\)

State

\(FEX_{y} INT_{y} - vf_{0}\)

WF_x

\(WF_{x}\)

State

\(VFE\)

omega

\(\omega\)

ExtState

v

\(v\)

Algeb

\(vbus\)

vout

\(vout\)

Algeb

\(ue vf_{0}\)

IN

\(IN\)

Algeb

\(- IN INT_{y} + KC XadIfd\)

FEX_y

\(FEX_{y}\)

Algeb

\(- FEX_{y} + \operatorname{FixPiecewise}{\left(\left( 1, \ IN \leq 0\right),\left( 1 - 0.577 IN, \ IN \leq 0.433\right),\left( \sqrt{0.75 - IN^{2}}, \ IN \leq 0.75\right),\left( 1.732 - 1.732 IN, \ IN \leq 1\right),\left( 0, \ \text{True}\right) \right)}\)

vi

\(vi\)

Algeb

\(- v + vref\)

LL_y

\(LL_{y}\)

Algeb

\(vi\)

Se

\(Se\)

Algeb

\(SAT_{B} \left(INT_{y} - SAT_{A}\right)^{2} \operatorname{Indicator}{\left(INT_{y} > SAT_{A} \right)}\)

VFE

\(VFE\)

Algeb

\(INT_{y} KE + KD XadIfd + Se\)

vref

\(vref\)

Algeb

\(v + \frac{VFE}{KA}\)

WF_y

\(WF_{y}\)

Algeb

\(0\)

vf

\(vf\)

ExtAlgeb

XadIfd

\(XadIfd\)

ExtAlgeb

a

\(a\)

ExtAlgeb

vbus

\(vbus\)

ExtAlgeb

Differential Equations#

Name

Symbol

Type

RHS of Equation "T x' = f(x, y)"

T (LHS)

LG_y

\(LG_{y}\)

State

\(- LG_{y} + v\)

\(T_R\)

LL_x

\(LL_{x}\)

State

\(- LL_{x} + vi\)

\(T_B\)

LA_y

\(LA_{y}\)

State

\(KA LL_{y} - LA_{y}\)

\(T_A\)

INT_y

\(INT_{y}\)

State

\(ue \left(LA_{y} - VFE\right)\)

\(T_E\)

WF_x

\(WF_{x}\)

State

\(VFE - WF_{x}\)

\(T_F\)

omega

\(\omega\)

ExtState

\(0\)

Algebraic Equations#

Name

Symbol

Type

RHS of Equation "0 = g(x, y)"

v

\(v\)

Algeb

\(- v + vbus\)

vout

\(vout\)

Algeb

\(ue \left(FEX_{y} INT_{y} - vout\right)\)

IN

\(IN\)

Algeb

\(ue \left(- IN INT_{y} + KC XadIfd\right)\)

FEX_y

\(FEX_{y}\)

Algeb

\(- FEX_{y} + \operatorname{FixPiecewise}{\left(\left( 1, \ IN \leq 0\right),\left( 1 - 0.577 IN, \ IN \leq 0.433\right),\left( \sqrt{0.75 - IN^{2}}, \ IN \leq 0.75\right),\left( 1.732 - 1.732 IN, \ IN \leq 1\right),\left( 0, \ \text{True}\right) \right)}\)

vi

\(vi\)

Algeb

\(ue \left(- WF_{y} - v - vi + vref\right)\)

LL_y

\(LL_{y}\)

Algeb

\(LL_{LT1 z1} LL_{LT2 z1} \left(- LL_{x} + LL_{y}\right) + LL_{x} TB - LL_{y} TB + TC \left(- LL_{x} + vi\right)\)

Se

\(Se\)

Algeb

\(ue \left(SAT_{B} SL_{z0} \left(INT_{y} - SAT_{A}\right)^{2} - Se\right)\)

VFE

\(VFE\)

Algeb

\(ue \left(INT_{y} KE + KD XadIfd + Se - VFE\right)\)

vref

\(vref\)

Algeb

\(- vref + vref_{0}\)

WF_y

\(WF_{y}\)

Algeb

\(KF \left(VFE - WF_{x}\right) - TF WF_{y}\)

vf

\(vf\)

ExtAlgeb

\(ue \left(- vf_{0} + vout\right)\)

XadIfd

\(XadIfd\)

ExtAlgeb

\(0\)

a

\(a\)

ExtAlgeb

\(0\)

vbus

\(vbus\)

ExtAlgeb

\(0\)

Services#

Name

Symbol

Equation

Type

ue

\(u_e\)

\(u ug\)

ConstService

SAT_E1

\(E^{1c}_{SAT}\)

\(E_{1}\)

ConstService

SAT_E2

\(E^{2c}_{SAT}\)

\(E_{2} - 2 SAT_{zSE2} + 2\)

ConstService

SAT_SE1

\(SE^{1c}_{SAT}\)

\(SE_{1}\)

ConstService

SAT_SE2

\(SE^{2c}_{SAT}\)

\(- 2 SAT_{zSE2} + SE_{2} + 2\)

ConstService

SAT_a

\(a_{SAT}\)

\(\sqrt{\frac{SAT_{E1} SAT_{SE1}}{SAT_{E2} SAT_{SE2}}} \left(\operatorname{Indicator}{\left(SAT_{SE2} > 0 \right)} + \operatorname{Indicator}{\left(SAT_{SE2} < 0 \right)}\right)\)

ConstService

SAT_A

\(A^q_{SAT}\)

\(SAT_{E2} - \frac{SAT_{E1} - SAT_{E2}}{SAT_{a} - 1}\)

ConstService

SAT_B

\(B^q_{SAT}\)

\(\frac{SAT_{E2} SAT_{SE2} \left(SAT_{a} - 1\right)^{2} \left(\operatorname{Indicator}{\left(SAT_{a} > 0 \right)} + \operatorname{Indicator}{\left(SAT_{a} < 0 \right)}\right)}{\left(SAT_{E1} - SAT_{E2}\right)^{2}}\)

ConstService

vref0

\(V_{ref0}\)

\(vref\)

PostInitService

Discretes#

Name

Symbol

Type

Info

LL_LT1

\(LT_{LL}\)

LessThan

LL_LT2

\(LT_{LL}\)

LessThan

LA_lim

\(lim_{LA}\)

AntiWindup

Limiter in Lag

SL

\(SL\)

LessThan

Blocks#

Name

Symbol

Type

Info

SAT

\(SAT\)

ExcQuadSat

Field voltage saturation

FEX

\(FEX\)

Piecewise

Piecewise function FEX

LG

\(LG\)

Lag

Voltage transducer

LL

\(LL\)

LeadLag

Regulator

LA

\(LA\)

LagAntiWindup

Lag AW on VR

INT

\(INT\)

Integrator

Integrator

WF

\(WF\)

Washout

Stablizing circuit feedback

Config Fields in [EXAC1]

Option

Symbol

Value

Info

Accepted values

allow_adjust

1

allow adjusting upper or lower limits

(0, 1)

adjust_lower

0

adjust lower limit

(0, 1)

adjust_upper

1

adjust upper limit

(0, 1)

EXAC2#

EXAC2 model.

Ref: https://www.powerworld.com/WebHelp/Content/TransientModels_HTML/Exciter%20EXAC2.htm

Notes#

VLR is an input parameter, but to initialize the LVGate, an internal VLRx will be computed as a contant upon initialization. The constant VLRx will be used in the place of VLR in the block diagram.

Parameters#

Name

Symbol

Description

Default

Unit

Properties

idx

unique device idx

u

\(u\)

connection status

1

bool

name

device name

syn

Synchronous generator idx

mandatory

TR

\(T_R\)

Sensing time constant

0.010

p.u.

TB

\(T_B\)

Lag time constant in lead-lag

1

p.u.

TC

\(T_C\)

Lead time constant in lead-lag

1

p.u.

KA

\(K_A\)

Regulator gain

80

TA

\(T_A\)

Lag time constant in regulator

0.040

p.u.

VRMAX

\(V_{RMAX}\)

Maximum regulator output

8

p.u.

VRMIN

\(V_{RMIN}\)

Minimum regulator output

0

p.u.

TE

\(T_E\)

Exciter integrator time constant

0.800

p.u.

non_negative

KF

\(K_F\)

Feedback gain

0.100

TF

\(T_F\)

Feedback delay

1

non_zero,non_negative

KC

\(K_C\)

Rectifier loading factor proportional to commutating reactance

0.100

KD

\(K_C\)

Ifd feedback gain

0

KE

\(K_E\)

Saturation feedback gain

1

p.u.

E1

\(E_1\)

First saturation point

0

p.u.

SE1

\(S_{E1}\)

Value at first saturation point

0

p.u.

E2

\(E_2\)

Second saturation point

1

p.u.

SE2

\(S_{E2}\)

Value at second saturation point

1

p.u.

VAMAX

\(V_{RMAX}\)

Maximum KA block output

8

p.u.

VAMIN

\(V_{RMIN}\)

Minimum KA block output

0

p.u.

VLR

\(V_{LR}\)

low voltage constant

0

p.u.

KL

\(K_L\)

gain for low voltage

1

p.u.

KH

\(K_H\)

gain for high voltage

1

p.u.

KB

\(K_B\)

gain KB for regulator

1

p.u.

non_negative

ug

\(u_g\)

Generator online status

0

bool

Sn

\(S_m\)

Rated power from generator

0

MVA

Vn

\(V_m\)

Rated voltage from generator

0

kV

bus

\(bus\)

Bus idx of the generators

0

Variables#

Name

Symbol

Type

Description

Unit

Properties

LG_y

\(LG_{y}\)

State

State in lag transfer function

v_str

LL_x

\(LL_{x}\)

State

State in lead-lag

v_str

LA_y

\(LA_{y}\)

State

State in lag TF

v_str

INT_y

\(INT_{y}\)

State

Integrator output

v_str,v_iter

WF_x

\(WF_{x}\)

State

State in washout filter

v_str

omega

\(\omega\)

ExtState

Generator speed

v

\(v\)

Algeb

Input to exciter (bus v or Eterm)

v_str

vout

\(vout\)

Algeb

Exciter final output voltage

v_str

IN

\(IN\)

Algeb

Input to FEX

v_str,v_iter

FEX_y

\(FEX_{y}\)

Algeb

Output of piecewise

v_str,v_iter

vi

\(vi\)

Algeb

Total input voltages

p.u.

v_str

LL_y

\(LL_{y}\)

Algeb

Output of lead-lag

v_str

Se

\(Se\)

Algeb

saturation output

v_str

VFE

\(VFE\)

Algeb

Combined saturation feedback

p.u.

v_str

vref

\(vref\)

Algeb

Reference voltage input

p.u.

v_str

WF_y

\(WF_{y}\)

Algeb

Output of washout filter

v_str

VHA

\(VHA\)

Algeb

v_str

VL

\(VL\)

Algeb

v_str

LVG_y

\(LVG_{y}\)

Algeb

LVGate output

v_str

VR_x

\(VR_{x}\)

Algeb

Value before limiter

v_str

VR_y

\(VR_{y}\)

Algeb

Output after limiter and post gain

v_str

VLRx

\(VLRx\)

Algeb

v_str

vf

\(vf\)

ExtAlgeb

Excitation field voltage to generator

XadIfd

\(XadIfd\)

ExtAlgeb

Armature excitation current

a

\(a\)

ExtAlgeb

Bus voltage phase angle

vbus

\(vbus\)

ExtAlgeb

Bus voltage magnitude

Initialization Equations#

Name

Symbol

Type

Initial Value

LG_y

\(LG_{y}\)

State

\(v\)

LL_x

\(LL_{x}\)

State

\(vi\)

LA_y

\(LA_{y}\)

State

\(KA LL_{y}\)

INT_y

\(INT_{y}\)

State

\(FEX_{y} INT_{y} - vf_{0}\)

WF_x

\(WF_{x}\)

State

\(VFE\)

omega

\(\omega\)

ExtState

v

\(v\)

Algeb

\(vbus\)

vout

\(vout\)

Algeb

\(ue vf_{0}\)

IN

\(IN\)

Algeb

\(- IN INT_{y} + KC XadIfd\)

FEX_y

\(FEX_{y}\)

Algeb

\(- FEX_{y} + \operatorname{FixPiecewise}{\left(\left( 1, \ IN \leq 0\right),\left( 1 - 0.577 IN, \ IN \leq 0.433\right),\left( \sqrt{0.75 - IN^{2}}, \ IN \leq 0.75\right),\left( 1.732 - 1.732 IN, \ IN \leq 1\right),\left( 0, \ \text{True}\right) \right)}\)

vi

\(vi\)

Algeb

\(- v + vref\)

LL_y

\(LL_{y}\)

Algeb

\(vi\)

Se

\(Se\)

Algeb

\(SAT_{B} \left(INT_{y} - SAT_{A}\right)^{2} \operatorname{Indicator}{\left(INT_{y} > SAT_{A} \right)}\)

VFE

\(VFE\)

Algeb

\(INT_{y} KE + KD XadIfd + Se\)

vref

\(vref\)

Algeb

\(v + \frac{KL VFE + \frac{VFE}{KB}}{KA}\)

WF_y

\(WF_{y}\)

Algeb

\(0\)

VHA

\(VHA\)

Algeb

\(- KH VFE + LA_{y}\)

VL

\(VL\)

Algeb

\(KL \left(- VFE + VLRx\right)\)

LVG_y

\(LVG_{y}\)

Algeb

\(LVG_{lt z0} VL + LVG_{lt z1} VHA\)

VR_x

\(VR_{x}\)

Algeb

\(KB LVG_{y}\)

VR_y

\(VR_{y}\)

Algeb

\(VRMAX VR_{lim zu} + VRMIN VR_{lim zl} + VR_{lim zi} VR_{x}\)

VLRx

\(VLRx\)

Algeb

\(VLR \operatorname{Indicator}{\left(VFE + \frac{VFE}{KB KL} < VLR \right)} + \left(VFE + \frac{VFE}{KB KL}\right) \operatorname{Indicator}{\left(VFE + \frac{VFE}{KB KL} > VLR \right)}\)

vf

\(vf\)

ExtAlgeb

XadIfd

\(XadIfd\)

ExtAlgeb

a

\(a\)

ExtAlgeb

vbus

\(vbus\)

ExtAlgeb

Differential Equations#

Name

Symbol

Type

RHS of Equation "T x' = f(x, y)"

T (LHS)

LG_y

\(LG_{y}\)

State

\(- LG_{y} + v\)

\(T_R\)

LL_x

\(LL_{x}\)

State

\(- LL_{x} + vi\)

\(T_B\)

LA_y

\(LA_{y}\)

State

\(KA LL_{y} - LA_{y}\)

\(T_A\)

INT_y

\(INT_{y}\)

State

\(ue \left(- VFE + VR_{y}\right)\)

\(T_E\)

WF_x

\(WF_{x}\)

State

\(VFE - WF_{x}\)

\(T_F\)

omega

\(\omega\)

ExtState

\(0\)

Algebraic Equations#

Name

Symbol

Type

RHS of Equation "0 = g(x, y)"

v

\(v\)

Algeb

\(- v + vbus\)

vout

\(vout\)

Algeb

\(ue \left(FEX_{y} INT_{y} - vout\right)\)

IN

\(IN\)

Algeb

\(ue \left(- IN INT_{y} + KC XadIfd\right)\)

FEX_y

\(FEX_{y}\)

Algeb

\(- FEX_{y} + \operatorname{FixPiecewise}{\left(\left( 1, \ IN \leq 0\right),\left( 1 - 0.577 IN, \ IN \leq 0.433\right),\left( \sqrt{0.75 - IN^{2}}, \ IN \leq 0.75\right),\left( 1.732 - 1.732 IN, \ IN \leq 1\right),\left( 0, \ \text{True}\right) \right)}\)

vi

\(vi\)

Algeb

\(ue \left(- WF_{y} - v - vi + vref\right)\)

LL_y

\(LL_{y}\)

Algeb

\(LL_{LT1 z1} LL_{LT2 z1} \left(- LL_{x} + LL_{y}\right) + LL_{x} TB - LL_{y} TB + TC \left(- LL_{x} + vi\right)\)

Se

\(Se\)

Algeb

\(ue \left(SAT_{B} SL_{z0} \left(INT_{y} - SAT_{A}\right)^{2} - Se\right)\)

VFE

\(VFE\)

Algeb

\(ue \left(INT_{y} KE + KD XadIfd + Se - VFE\right)\)

vref

\(vref\)

Algeb

\(- vref + vref_{0}\)

WF_y

\(WF_{y}\)

Algeb

\(KF \left(VFE - WF_{x}\right) - TF WF_{y}\)

VHA

\(VHA\)

Algeb

\(- KH VFE + LA_{y} - VHA\)

VL

\(VL\)

Algeb

\(KL \left(- VFE + VLRx\right) - VL\)

LVG_y

\(LVG_{y}\)

Algeb

\(LVG_{lt z0} VL + LVG_{lt z1} VHA - LVG_{y}\)

VR_x

\(VR_{x}\)

Algeb

\(KB LVG_{y} - VR_{x}\)

VR_y

\(VR_{y}\)

Algeb

\(VRMAX VR_{lim zu} + VRMIN VR_{lim zl} + VR_{lim zi} VR_{x} - VR_{y}\)

VLRx

\(VLRx\)

Algeb

\(VLR_{0} - VLRx\)

vf

\(vf\)

ExtAlgeb

\(ue \left(- vf_{0} + vout\right)\)

XadIfd

\(XadIfd\)

ExtAlgeb

\(0\)

a

\(a\)

ExtAlgeb

\(0\)

vbus

\(vbus\)

ExtAlgeb

\(0\)

Services#

Name

Symbol

Equation

Type

ue

\(u_e\)

\(u ug\)

ConstService

SAT_E1

\(E^{1c}_{SAT}\)

\(E_{1}\)

ConstService

SAT_E2

\(E^{2c}_{SAT}\)

\(E_{2} - 2 SAT_{zSE2} + 2\)

ConstService

SAT_SE1

\(SE^{1c}_{SAT}\)

\(SE_{1}\)

ConstService

SAT_SE2

\(SE^{2c}_{SAT}\)

\(- 2 SAT_{zSE2} + SE_{2} + 2\)

ConstService

SAT_a

\(a_{SAT}\)

\(\sqrt{\frac{SAT_{E1} SAT_{SE1}}{SAT_{E2} SAT_{SE2}}} \left(\operatorname{Indicator}{\left(SAT_{SE2} > 0 \right)} + \operatorname{Indicator}{\left(SAT_{SE2} < 0 \right)}\right)\)

ConstService

SAT_A

\(A^q_{SAT}\)

\(SAT_{E2} - \frac{SAT_{E1} - SAT_{E2}}{SAT_{a} - 1}\)

ConstService

SAT_B

\(B^q_{SAT}\)

\(\frac{SAT_{E2} SAT_{SE2} \left(SAT_{a} - 1\right)^{2} \left(\operatorname{Indicator}{\left(SAT_{a} > 0 \right)} + \operatorname{Indicator}{\left(SAT_{a} < 0 \right)}\right)}{\left(SAT_{E1} - SAT_{E2}\right)^{2}}\)

ConstService

vref0

\(V_{ref0}\)

\(vref\)

PostInitService

VLR0

\(VLR0\)

\(VLRx\)

PostInitService

Discretes#

Name

Symbol

Type

Info

LL_LT1

\(LT_{LL}\)

LessThan

LL_LT2

\(LT_{LL}\)

LessThan

LA_lim

\(lim_{LA}\)

AntiWindup

Limiter in Lag

SL

\(SL\)

LessThan

LVG_lt

\(None_{LVG}\)

LessThan

VR_lim

\(lim_{VR}\)

HardLimiter

Blocks#

Name

Symbol

Type

Info

SAT

\(SAT\)

ExcQuadSat

Field voltage saturation

FEX

\(FEX\)

Piecewise

Piecewise function FEX

LG

\(LG\)

Lag

Voltage transducer

LL

\(LL\)

LeadLag

Regulator

LA

\(LA\)

LagAntiWindup

Lag AW on VR

INT

\(INT\)

Integrator

Integrator

WF

\(WF\)

Washout

Stablizing circuit feedback

LVG

\(LVG\)

LVGate

VR

\(VR\)

GainLimiter

Config Fields in [EXAC2]

Option

Symbol

Value

Info

Accepted values

allow_adjust

1

allow adjusting upper or lower limits

(0, 1)

adjust_lower

0

adjust lower limit

(0, 1)

adjust_upper

1

adjust upper limit

(0, 1)

EXAC4#

IEEE Type AC4 excitation system model.

Parameters#

Name

Symbol

Description

Default

Unit

Properties

idx

unique device idx

u

\(u\)

connection status

1

bool

name

device name

syn

Synchronous generator idx

mandatory

TR

\(T_R\)

Sensing time constant

0.010

p.u.

VIMAX

\(V_{IMAX}\)

Max. input voltage

5

VIMIN

\(V_{IMIN}\)

Min. input voltage

-0.100

TC

\(T_C\)

Lead time constant in lead-lag

1

p.u.

TB

\(T_B\)

Lag time constant in lead-lag

1

p.u.

KA

\(K_A\)

Regulator gain

80

TA

\(T_A\)

Lag time constant in regulator

0.040

p.u.

VRMAX

\(V_{RMAX}\)

Maximum excitation limit

8

p.u.

VRMIN

\(V_{RMIN}\)

Minimum excitation limit

0

p.u.

KC

\(K_C\)

Reactive power compensation gain

0

ug

\(u_g\)

Generator online status

0

bool

Sn

\(S_m\)

Rated power from generator

0

MVA

Vn

\(V_m\)

Rated voltage from generator

0

kV

bus

\(bus\)

Bus idx of the generators

0

Variables#

Name

Symbol

Type

Description

Unit

Properties

LG_y

\(LG_{y}\)

State

State in lag transfer function

v_str

LL_x

\(LL_{x}\)

State

State in lead-lag

v_str

LR_y

\(LR_{y}\)

State

State in lag transfer function

v_str

omega

\(\omega\)

ExtState

Generator speed

v

\(v\)

Algeb

Input to exciter (bus v or Eterm)

v_str

vout

\(vout\)

Algeb

Exciter final output voltage

v_str

vi

\(vi\)

Algeb

Total input voltages

p.u.

v_str

LL_y

\(LL_{y}\)

Algeb

Output of lead-lag

v_str

vfmax

\(vfmax\)

Algeb

Upper bound of output limiter

v_str

vfmin

\(vfmin\)

Algeb

Lower bound of output limiter

v_str

vf

\(vf\)

ExtAlgeb

Excitation field voltage to generator

XadIfd

\(XadIfd\)

ExtAlgeb

Armature excitation current

a

\(a\)

ExtAlgeb

Bus voltage phase angle

vbus

\(vbus\)

ExtAlgeb

Bus voltage magnitude

Initialization Equations#

Name

Symbol

Type

Initial Value

LG_y

\(LG_{y}\)

State

\(v\)

LL_x

\(LL_{x}\)

State

\(HLI_{zi} vi + HLI_{zl} VIMIN + HLI_{zu} VIMAX\)

LR_y

\(LR_{y}\)

State

\(KA LL_{y}\)

omega

\(\omega\)

ExtState

v

\(v\)

Algeb

\(vbus\)

vout

\(vout\)

Algeb

\(ue vf_{0}\)

vi

\(vi\)

Algeb

\(\frac{vf_{0}}{KA}\)

LL_y

\(LL_{y}\)

Algeb

\(HLI_{zi} vi + HLI_{zl} VIMIN + HLI_{zu} VIMAX\)

vfmax

\(vfmax\)

Algeb

\(- KC XadIfd + VRMAX\)

vfmin

\(vfmin\)

Algeb

\(- KC XadIfd + VRMIN\)

vf

\(vf\)

ExtAlgeb

XadIfd

\(XadIfd\)

ExtAlgeb

a

\(a\)

ExtAlgeb

vbus

\(vbus\)

ExtAlgeb

Differential Equations#

Name

Symbol

Type

RHS of Equation "T x' = f(x, y)"

T (LHS)

LG_y

\(LG_{y}\)

State

\(- LG_{y} + v\)

\(T_R\)

LL_x

\(LL_{x}\)

State

\(HLI_{zi} vi + HLI_{zl} VIMIN + HLI_{zu} VIMAX - LL_{x}\)

\(T_B\)

LR_y

\(LR_{y}\)

State

\(KA LL_{y} - LR_{y}\)

\(T_A\)

omega

\(\omega\)

ExtState

\(0\)

Algebraic Equations#

Name

Symbol

Type

RHS of Equation "0 = g(x, y)"

v

\(v\)

Algeb

\(- v + vbus\)

vout

\(vout\)

Algeb

\(ue \left(HLR_{zi} LR_{y} + HLR_{zl} vfmin + HLR_{zu} vfmax\right) - vout\)

vi

\(vi\)

Algeb

\(- LG_{y} - vi + vref_{0}\)

LL_y

\(LL_{y}\)

Algeb

\(LL_{LT1 z1} LL_{LT2 z1} \left(- LL_{x} + LL_{y}\right) + LL_{x} TB - LL_{y} TB + TC \left(HLI_{zi} vi + HLI_{zl} VIMIN + HLI_{zu} VIMAX - LL_{x}\right)\)

vfmax

\(vfmax\)

Algeb

\(- KC XadIfd + VRMAX - vfmax\)

vfmin

\(vfmin\)

Algeb

\(- KC XadIfd + VRMIN - vfmin\)

vf

\(vf\)

ExtAlgeb

\(ue \left(- vf_{0} + vout\right)\)

XadIfd

\(XadIfd\)

ExtAlgeb

\(0\)

a

\(a\)

ExtAlgeb

\(0\)

vbus

\(vbus\)

ExtAlgeb

\(0\)

Services#

Name

Symbol

Equation

Type

ue

\(u_e\)

\(u ug\)

ConstService

vref0

\(V_{ref0}\)

\(v + \frac{vf_{0}}{KA}\)

PostInitService

Discretes#

Name

Symbol

Type

Info

HLI

\(HLI\)

HardLimiter

Hard limiter on input

LL_LT1

\(LT_{LL}\)

LessThan

LL_LT2

\(LT_{LL}\)

LessThan

HLR

\(HLR\)

HardLimiter

Hard limiter on regulator output

Blocks#

Name

Symbol

Type

Info

LG

\(LG\)

Lag

Sensing delay

LL

\(LL\)

LeadLag

Lead-lag compensator

LR

\(LR\)

Lag

Regulator

Config Fields in [EXAC4]

Option

Symbol

Value

Info

Accepted values

allow_adjust

1

allow adjusting upper or lower limits

(0, 1)

adjust_lower

0

adjust lower limit

(0, 1)

adjust_upper

1

adjust upper limit

(0, 1)

ESST4B#

Parameters#

Name

Symbol

Description

Default

Unit

Properties

idx

unique device idx

u

\(u\)

connection status

1

bool

name

device name

syn

Synchronous generator idx

mandatory

TR

\(T_R\)

Sensing time constant

0.010

p.u.

KPR

\(K_{PR}\)

Proportional gain 1

1

p.u.

KIR

\(K_{IR}\)

Integral gain 1

0

p.u.

VRMAX

\(V_{RMAX}\)

Maximum regulator limit

8

p.u.

VRMIN

\(V_{RMIN}\)

Minimum regulator limit

0

p.u.

TA

\(T_A\)

Lag time constant

0.100

KPM

\(K_{PM}\)

Proportional gain 2

1

p.u.

KIM

\(K_{IM}\)

Integral gain 2

0

p.u.

VMMAX

\(V_{RMAX}\)

Maximum inner loop limit

8

p.u.

VMMIN

\(V_{RMIN}\)

Minimum inner loop limit

0

p.u.

KG

\(K_G\)

Feedback gain of inner field regulator

1

KP

\(K_P\)

Potential circuit gain coeff.

4

KI

\(K_I\)

Potential circuit gain coeff.

0.100

VBMAX

\(V_{BMAX}\)

VB upper limit

18

p.u.

KC

\(K_C\)

Rectifier loading factor proportional to commutating reactance

0.100

XL

\(X_L\)

Potential source reactance

0.010

THETAP

\(\theta_P\)

Rectifier firing angle

0

degree

VGMAX

\(V_{GMAX}\)

VG upper limit

20

p.u.

ug

\(u_g\)

Generator online status

0

bool

Sn

\(S_m\)

Rated power from generator

0

MVA

Vn

\(V_m\)

Rated voltage from generator

0

kV

bus

\(bus\)

Bus idx of the generators

0

Variables#

Name

Symbol

Type

Description

Unit

Properties

LG_y

\(LG_{y}\)

State

State in lag transfer function

v_str

PI1_xi

\(\pi_{1 \xi}\)

State

Integrator output

v_str

LA_y

\(LA_{y}\)

State

State in lag transfer function

v_str

PI2_xi

\(\pi_{2 \xi}\)

State

Integrator output

v_str

omega

\(\omega\)

ExtState

Generator speed

v

\(v\)

Algeb

Input to exciter (bus v or Eterm)

v_str

vout

\(vout\)

Algeb

Exciter final output voltage

v_str

UEL

\(UEL\)

Algeb

Interface var for under exc. limiter

v_str

IN

\(IN\)

Algeb

Input to FEX

v_str

FEX_y

\(FEX_{y}\)

Algeb

Output of piecewise

v_str

VB_x

\(VB_{x}\)

Algeb

Value before limiter

v_str

VB_y

\(VB_{y}\)

Algeb

Output after limiter and post gain

v_str

VG_x

\(VG_{x}\)

Algeb

Value before limiter

v_str

VG_y

\(VG_{y}\)

Algeb

Output after limiter and post gain

v_str

vref

\(vref\)

Algeb

Reference voltage input

p.u.

v_str

vi

\(vi\)

Algeb

Total input voltages

p.u.

v_str

PI1_ys

\(\pi_{1 ys}\)

Algeb

PI summation before limit

v_str

PI1_y

\(\pi_{1 y}\)

Algeb

PI output

v_str

PI2_ys

\(\pi_{2 ys}\)

Algeb

PI summation before limit

v_str

PI2_y

\(\pi_{2 y}\)

Algeb

PI output

v_str

vf

\(vf\)

ExtAlgeb

Excitation field voltage to generator

XadIfd

\(XadIfd\)

ExtAlgeb

Armature excitation current

a

\(a\)

ExtAlgeb

Bus voltage phase angle

vbus

\(vbus\)

ExtAlgeb

Bus voltage magnitude

vd

\(vd\)

ExtAlgeb

d-axis machine voltage

vq

\(vq\)

ExtAlgeb

q-axis machine voltage

Id

\(Id\)

ExtAlgeb

d-axis machine current

Iq

\(Iq\)

ExtAlgeb

q-axis machine current

Initialization Equations#

Name

Symbol

Type

Initial Value

LG_y

\(LG_{y}\)

State

\(v\)

PI1_xi

\(\pi_{1 \xi}\)

State

\(VG_{y}\)

LA_y

\(LA_{y}\)

State

\(1.0 \pi_{1 y}\)

PI2_xi

\(\pi_{2 \xi}\)

State

\(\operatorname{safe}_{div}{\left(vf_{0},VB_{y} \right)}\)

omega

\(\omega\)

ExtState

v

\(v\)

Algeb

\(vbus\)

vout

\(vout\)

Algeb

\(ue vf_{0}\)

UEL

\(UEL\)

Algeb

\(0\)

IN

\(IN\)

Algeb

\(\operatorname{safe}_{div}{\left(KC XadIfd,VE \right)}\)

FEX_y

\(FEX_{y}\)

Algeb

\(\operatorname{FixPiecewise}{\left(\left( 1, \ IN \leq 0\right),\left( 1 - 0.577 IN, \ IN \leq 0.433\right),\left( \sqrt{0.75 - IN^{2}}, \ IN \leq 0.75\right),\left( 1.732 - 1.732 IN, \ IN \leq 1\right),\left( 0, \ \text{True}\right) \right)}\)

VB_x

\(VB_{x}\)

Algeb

\(FEX_{y} VE\)

VB_y

\(VB_{y}\)

Algeb

\(VBMAX VB_{lim zu} + VB_{lim zi} VB_{x}\)

VG_x

\(VG_{x}\)

Algeb

\(KG vout\)

VG_y

\(VG_{y}\)

Algeb

\(VGMAX VG_{lim zu} + VG_{lim zi} VG_{x}\)

vref

\(vref\)

Algeb

\(v\)

vi

\(vi\)

Algeb

\(- v + vref\)

PI1_ys

\(\pi_{1 ys}\)

Algeb

\(KPR vi + VG_{y}\)

PI1_y

\(\pi_{1 y}\)

Algeb

\(\pi_{1 lim zi} \pi_{1 ys} + \pi_{1 lim zl} VRMIN + \pi_{1 lim zu} VRMAX\)

PI2_ys

\(\pi_{2 ys}\)

Algeb

\(KPM \left(LA_{y} - VG_{y}\right) + \operatorname{safe}_{div}{\left(vf_{0},VB_{y} \right)}\)

PI2_y

\(\pi_{2 y}\)

Algeb

\(\pi_{2 lim zi} \pi_{2 ys} + \pi_{2 lim zl} VMMIN + \pi_{2 lim zu} VMMAX\)

vf

\(vf\)

ExtAlgeb

XadIfd

\(XadIfd\)

ExtAlgeb

a

\(a\)

ExtAlgeb

vbus

\(vbus\)

ExtAlgeb

vd

\(vd\)

ExtAlgeb

vq

\(vq\)

ExtAlgeb

Id

\(Id\)

ExtAlgeb

Iq

\(Iq\)

ExtAlgeb

Differential Equations#

Name

Symbol

Type

RHS of Equation "T x' = f(x, y)"

T (LHS)

LG_y

\(LG_{y}\)

State

\(- LG_{y} + v\)

\(T_R\)

PI1_xi

\(\pi_{1 \xi}\)

State

\(KIR \left(2 \pi_{1 y} - 2 \pi_{1 ys} + vi\right)\)

LA_y

\(LA_{y}\)

State

\(- LA_{y} + 1.0 \pi_{1 y}\)

\(T_A\)

PI2_xi

\(\pi_{2 \xi}\)

State

\(KIM \left(LA_{y} + 2 \pi_{2 y} - 2 \pi_{2 ys} - VG_{y}\right)\)

omega

\(\omega\)

ExtState

\(0\)

Algebraic Equations#

Name

Symbol

Type

RHS of Equation "0 = g(x, y)"

v

\(v\)

Algeb

\(- v + vbus\)

vout

\(vout\)

Algeb

\(\pi_{2 y} VB_{y} ue - vout\)

UEL

\(UEL\)

Algeb

\(- UEL\)

IN

\(IN\)

Algeb

\(ue \left(- IN VE + KC XadIfd\right)\)

FEX_y

\(FEX_{y}\)

Algeb

\(- FEX_{y} + \operatorname{FixPiecewise}{\left(\left( 1, \ IN \leq 0\right),\left( 1 - 0.577 IN, \ IN \leq 0.433\right),\left( \sqrt{0.75 - IN^{2}}, \ IN \leq 0.75\right),\left( 1.732 - 1.732 IN, \ IN \leq 1\right),\left( 0, \ \text{True}\right) \right)}\)

VB_x

\(VB_{x}\)

Algeb

\(FEX_{y} VE - VB_{x}\)

VB_y

\(VB_{y}\)

Algeb

\(VBMAX VB_{lim zu} + VB_{lim zi} VB_{x} - VB_{y}\)

VG_x

\(VG_{x}\)

Algeb

\(KG vout - VG_{x}\)

VG_y

\(VG_{y}\)

Algeb

\(VGMAX VG_{lim zu} + VG_{lim zi} VG_{x} - VG_{y}\)

vref

\(vref\)

Algeb

\(- vref + vref_{0}\)

vi

\(vi\)

Algeb

\(- LG_{y} - vi + vref\)

PI1_ys

\(\pi_{1 ys}\)

Algeb

\(KPR vi + \pi_{1 \xi} - \pi_{1 ys}\)

PI1_y

\(\pi_{1 y}\)

Algeb

\(\pi_{1 lim zi} \pi_{1 ys} + \pi_{1 lim zl} VRMIN + \pi_{1 lim zu} VRMAX - \pi_{1 y}\)

PI2_ys

\(\pi_{2 ys}\)

Algeb

\(KPM \left(LA_{y} - VG_{y}\right) + \pi_{2 \xi} - \pi_{2 ys}\)

PI2_y

\(\pi_{2 y}\)

Algeb

\(\pi_{2 lim zi} \pi_{2 ys} + \pi_{2 lim zl} VMMIN + \pi_{2 lim zu} VMMAX - \pi_{2 y}\)

vf

\(vf\)

ExtAlgeb

\(ue \left(- vf_{0} + vout\right)\)

XadIfd

\(XadIfd\)

ExtAlgeb

\(0\)

a

\(a\)

ExtAlgeb

\(0\)

vbus

\(vbus\)

ExtAlgeb

\(0\)

vd

\(vd\)

ExtAlgeb

\(0\)

vq

\(vq\)

ExtAlgeb

\(0\)

Id

\(Id\)

ExtAlgeb

\(0\)

Iq

\(Iq\)

ExtAlgeb

\(0\)

Services#

Name

Symbol

Equation

Type

ue

\(u_e\)

\(u ug\)

ConstService

KPC

\(K_{PC}\)

\(KP e^{i \operatorname{radians}{\left(THETAP \right)}}\)

ConstService

VE

\(V_E\)

\(\left|{KPC \left(vd + i vq\right) + i \left(Id + i Iq\right) \left(KI + KPC XL\right)}\right|\)

VarService

vref0

\(V_{ref0}\)

\(vref\)

PostInitService

Discretes#

Name

Symbol

Type

Info

VB_lim

\(lim_{VB}\)

HardLimiter

VG_lim

\(lim_{VG}\)

HardLimiter

PI1_lim

\(lim_{PI1}\)

HardLimiter

PI2_lim

\(lim_{PI2}\)

HardLimiter

Blocks#

Name

Symbol

Type

Info

LG

\(LG\)

Lag

Voltage transducer

FEX

\(FEX\)

Piecewise

Piecewise function FEX

VB

\(VB\)

GainLimiter

VB with limiter

VG

\(VG\)

GainLimiter

Feedback gain with HL

PI1

\(PI1\)

PITrackAW

LA

\(LA\)

Lag

Regulation delay

PI2

\(PI2\)

PITrackAW

Config Fields in [ESST4B]

Option

Symbol

Value

Info

Accepted values

allow_adjust

1

allow adjusting upper or lower limits

(0, 1)

adjust_lower

0

adjust lower limit

(0, 1)

adjust_upper

1

adjust upper limit

(0, 1)

ksr

\(K_{sr}\)

2

Tracking gain for outer PI controller

ksm

\(K_{sm}\)

2

Tracking gain for inner PI controller

AC8B#

Exciter AC8B model.

Reference: [1], [2]

Parameters#

Name

Symbol

Description

Default

Unit

Properties

idx

unique device idx

u

\(u\)

connection status

1

bool

name

device name

syn

Synchronous generator idx

mandatory

TR

\(T_R\)

Sensing time constant

0.010

p.u.

kP

\(k_P\)

PID proportional coeff.

10

kI

\(k_I\)

PID integrative coeff.

10

kD

\(k_D\)

PID derivative coeff.

10

Td

\(T_d\)

PID derivative time constant.

0.200

VPMAX

\(V_{PMAX}\)

PID maximum limit

999

p.u.

VPMIN

\(V_{PMIN}\)

PID minimum limit

-999

p.u.

VRMAX

\(V_{RMAX}\)

Maximum regulator limit

7.300

p.u.

VRMIN

\(V_{RMIN}\)

Minimum regulator limit

1

p.u.

VFEMAX

\(V_{FEMAX}\)

Exciter field current limit

999

p.u.

VEMIN

\(V_{EMIN}\)

Minimum exciter voltage output

-999

p.u.

TA

\(T_A\)

Lag time constant in anti-windup lag

0.040

p.u.

KA

\(K_A\)

Gain in anti-windup lag TF

40

p.u.

TE

\(T_E\)

Exciter integrator time constant

0.800

p.u.

E1

\(E_1\)

First saturation point

0

p.u.

SE1

\(S_{E1}\)

Value at first saturation point

0

p.u.

E2

\(E_2\)

Second saturation point

1

p.u.

SE2

\(S_{E2}\)

Value at second saturation point

1

p.u.

KE

\(K_E\)

Gain added to saturation

1

p.u.

KD

\(K_D\)

Ifd feedback gain

0

KC

\(K_C\)

Rectifier loading factor proportional to commutating reactance

0.100

ug

\(u_g\)

Generator online status

0

bool

Sn

\(S_m\)

Rated power from generator

0

MVA

Vn

\(V_m\)

Rated voltage from generator

0

kV

bus

\(bus\)

Bus idx of the generators

0

Variables#

Name

Symbol

Type

Description

Unit

Properties

LG_y

\(LG_{y}\)

State

State in lag transfer function

v_str

PID_xi

\(PID_{\xi}\)

State

Integrator output

v_str

PID_WO_x

\(PID_{WO x}\)

State

State in washout filter

v_str

LA_y

\(LA_{y}\)

State

State in lag TF

v_str

INT_y

\(INT_{y}\)

State

Integrator output

v_str,v_iter

omega

\(\omega\)

ExtState

Generator speed

v

\(v\)

Algeb

Input to exciter (bus v or Eterm)

v_str

vout

\(vout\)

Algeb

Exciter final output voltage

v_str

IN

\(IN\)

Algeb

Input to FEX

v_str,v_iter

FEX_y

\(FEX_{y}\)

Algeb

Output of piecewise

v_str,v_iter

UEL

\(UEL\)

Algeb

Interface var for under exc. limiter

v_str

OEL

\(OEL\)

Algeb

Interface var for over exc. limiter

v_str

Vs

\(Vs\)

Algeb

Voltage compensation from PSS

v_str

vref

\(vref\)

Algeb

Reference voltage input

p.u.

v_str

vi

\(vi\)

Algeb

Total input voltages

p.u.

v_str

PID_uin

\(PID_{uin}\)

Algeb

PID input

v_str

PID_WO_y

\(PID_{WO y}\)

Algeb

Output of washout filter

v_str

PID_ys

\(PID_{ys}\)

Algeb

PI summation before limit

v_str

PID_y

\(PID_{y}\)

Algeb

PI output

v_str

Se

\(Se\)

Algeb

saturation output

v_str

VFE

\(VFE\)

Algeb

Combined saturation feedback

p.u.

v_str

vf

\(vf\)

ExtAlgeb

Excitation field voltage to generator

XadIfd

\(XadIfd\)

ExtAlgeb

Armature excitation current

a

\(a\)

ExtAlgeb

Bus voltage phase angle

vbus

\(vbus\)

ExtAlgeb

Bus voltage magnitude

Initialization Equations#

Name

Symbol

Type

Initial Value

LG_y

\(LG_{y}\)

State

\(v\)

PID_xi

\(PID_{\xi}\)

State

\(\frac{VFE}{KA}\)

PID_WO_x

\(PID_{WO x}\)

State

\(PID_{uin}\)

LA_y

\(LA_{y}\)

State

\(KA PID_{y}\)

INT_y

\(INT_{y}\)

State

\(FEX_{y} INT_{y} - vf_{0}\)

omega

\(\omega\)

ExtState

v

\(v\)

Algeb

\(vbus\)

vout

\(vout\)

Algeb

\(ue vf_{0}\)

IN

\(IN\)

Algeb

\(- IN INT_{y} + KC XadIfd\)

FEX_y

\(FEX_{y}\)

Algeb

\(- FEX_{y} + \operatorname{FixPiecewise}{\left(\left( 1, \ IN \leq 0\right),\left( 1 - 0.577 IN, \ IN \leq 0.433\right),\left( \sqrt{0.75 - IN^{2}}, \ IN \leq 0.75\right),\left( 1.732 - 1.732 IN, \ IN \leq 1\right),\left( 0, \ \text{True}\right) \right)}\)

UEL

\(UEL\)

Algeb

\(UEL_{0}\)

OEL

\(OEL\)

Algeb

\(OEL_{0}\)

Vs

\(Vs\)

Algeb

\(0\)

vref

\(vref\)

Algeb

\(v\)

vi

\(vi\)

Algeb

\(- v + vref\)

PID_uin

\(PID_{uin}\)

Algeb

\(vi\)

PID_WO_y

\(PID_{WO y}\)

Algeb

\(0\)

PID_ys

\(PID_{ys}\)

Algeb

\(kP vi + \frac{VFE}{KA}\)

PID_y

\(PID_{y}\)

Algeb

\(PID_{lim zi} PID_{ys} + PID_{lim zl} VPMIN + PID_{lim zu} VPMAX\)

Se

\(Se\)

Algeb

\(SAT_{B} \left(INT_{y} - SAT_{A}\right)^{2} \operatorname{Indicator}{\left(INT_{y} > SAT_{A} \right)}\)

VFE

\(VFE\)

Algeb

\(INT_{y} KE + KD XadIfd + Se\)

vf

\(vf\)

ExtAlgeb

XadIfd

\(XadIfd\)

ExtAlgeb

a

\(a\)

ExtAlgeb

vbus

\(vbus\)

ExtAlgeb

Differential Equations#

Name

Symbol

Type

RHS of Equation "T x' = f(x, y)"

T (LHS)

LG_y

\(LG_{y}\)

State

\(- LG_{y} + v\)

\(T_R\)

PID_xi

\(PID_{\xi}\)

State

\(kI \left(2 PID_{y} - 2 PID_{ys} + vi\right)\)

PID_WO_x

\(PID_{WO x}\)

State

\(- PID_{WO x} + PID_{uin}\)

\(T_d\)

LA_y

\(LA_{y}\)

State

\(KA PID_{y} - LA_{y}\)

\(T_A\)

INT_y

\(INT_{y}\)

State

\(ue \left(LA_{y} - VFE\right)\)

\(T_E\)

omega

\(\omega\)

ExtState

\(0\)

Algebraic Equations#

Name

Symbol

Type

RHS of Equation "0 = g(x, y)"

v

\(v\)

Algeb

\(- v + vbus\)

vout

\(vout\)

Algeb

\(ue \left(FEX_{y} INT_{y} - vout\right)\)

IN

\(IN\)

Algeb

\(ue \left(- IN INT_{y} + KC XadIfd\right)\)

FEX_y

\(FEX_{y}\)

Algeb

\(- FEX_{y} + \operatorname{FixPiecewise}{\left(\left( 1, \ IN \leq 0\right),\left( 1 - 0.577 IN, \ IN \leq 0.433\right),\left( \sqrt{0.75 - IN^{2}}, \ IN \leq 0.75\right),\left( 1.732 - 1.732 IN, \ IN \leq 1\right),\left( 0, \ \text{True}\right) \right)}\)

UEL

\(UEL\)

Algeb

\(- UEL + UEL_{0}\)

OEL

\(OEL\)

Algeb

\(- OEL + OEL_{0}\)

Vs

\(Vs\)

Algeb

\(- Vs\)

vref

\(vref\)

Algeb

\(- vref + vref_{0}\)

vi

\(vi\)

Algeb

\(ue \left(- LG_{y} + OEL + UEL + Vs - vi + vref\right)\)

PID_uin

\(PID_{uin}\)

Algeb

\(- PID_{uin} + vi\)

PID_WO_y

\(PID_{WO y}\)

Algeb

\(- PID_{WO y} Td + kD \left(- PID_{WO x} + PID_{uin}\right)\)

PID_ys

\(PID_{ys}\)

Algeb

\(PID_{WO y} + PID_{\xi} - PID_{ys} + kP vi\)

PID_y

\(PID_{y}\)

Algeb

\(PID_{lim zi} PID_{ys} + PID_{lim zl} VPMIN + PID_{lim zu} VPMAX - PID_{y}\)

Se

\(Se\)

Algeb

\(ue \left(SAT_{B} SL_{z0} \left(INT_{y} - SAT_{A}\right)^{2} - Se\right)\)

VFE

\(VFE\)

Algeb

\(ue \left(INT_{y} KE + KD XadIfd + Se - VFE\right)\)

vf

\(vf\)

ExtAlgeb

\(ue \left(- vf_{0} + vout\right)\)

XadIfd

\(XadIfd\)

ExtAlgeb

\(0\)

a

\(a\)

ExtAlgeb

\(0\)

vbus

\(vbus\)

ExtAlgeb

\(0\)

Services#

Name

Symbol

Equation

Type

ue

\(u_e\)

\(u ug\)

ConstService

UEL0

\(UEL0\)

\(0\)

ConstService

OEL0

\(OEL0\)

\(0\)

ConstService

SAT_E1

\(E^{1c}_{SAT}\)

\(E_{1}\)

ConstService

SAT_E2

\(E^{2c}_{SAT}\)

\(E_{2} - 2 SAT_{zSE2} + 2\)

ConstService

SAT_SE1

\(SE^{1c}_{SAT}\)

\(SE_{1}\)

ConstService

SAT_SE2

\(SE^{2c}_{SAT}\)

\(- 2 SAT_{zSE2} + SE_{2} + 2\)

ConstService

SAT_a

\(a_{SAT}\)

\(\sqrt{\frac{SAT_{E1} SAT_{SE1}}{SAT_{E2} SAT_{SE2}}} \left(\operatorname{Indicator}{\left(SAT_{SE2} > 0 \right)} + \operatorname{Indicator}{\left(SAT_{SE2} < 0 \right)}\right)\)

ConstService

SAT_A

\(A^q_{SAT}\)

\(SAT_{E2} - \frac{SAT_{E1} - SAT_{E2}}{SAT_{a} - 1}\)

ConstService

SAT_B

\(B^q_{SAT}\)

\(\frac{SAT_{E2} SAT_{SE2} \left(SAT_{a} - 1\right)^{2} \left(\operatorname{Indicator}{\left(SAT_{a} > 0 \right)} + \operatorname{Indicator}{\left(SAT_{a} < 0 \right)}\right)}{\left(SAT_{E1} - SAT_{E2}\right)^{2}}\)

ConstService

vref0

\(V_{ref0}\)

\(v\)

PostInitService

Discretes#

Name

Symbol

Type

Info

PID_lim

\(lim_{PID}\)

HardLimiter

LA_lim

\(lim_{LA}\)

AntiWindup

Limiter in Lag

SL

\(SL\)

LessThan

Blocks#

Name

Symbol

Type

Info

FEX

\(FEX\)

Piecewise

Piecewise function FEX

LG

\(LG\)

Lag

Voltage transducer

PID

\(PID\)

PIDTrackAW

PID

PID_WO

\(PID\ {WO}_{PID}\)

Washout

Washout

LA

\(LA\)

LagAntiWindup

V_{R}, Anti-windup lag

SAT

\(SAT\)

ExcQuadSat

Field voltage saturation

INT

\(INT\)

Integrator

V_E, integrator

Config Fields in [AC8B]

Option

Symbol

Value

Info

Accepted values

allow_adjust

1

allow adjusting upper or lower limits

(0, 1)

adjust_lower

0

adjust lower limit

(0, 1)

adjust_upper

1

adjust upper limit

(0, 1)

ks

2

Tracking gain for PID controller

IEEET3#

Exciter IEEET3.

Reference:

[1] PowerWorld, Exciter IEEET3, [Online],

[2] NEPLAN, Exciters Models, [Online],

Available:

https://www.powerworld.com/WebHelp/Content/TransientModels_HTML/Exciter%20IEEET3.htm

https://www.neplan.ch/wp-content/uploads/2015/08/Nep_EXCITERS1.pdf

Parameters#

Name

Symbol

Description

Default

Unit

Properties

idx

unique device idx

u

\(u\)

connection status

1

bool

name

device name

syn

Synchronous generator idx

mandatory

TR

\(T_R\)

Sensing time constant

0.020

p.u.

KA

\(K_A\)

Regulator gain

5

p.u.

TA

\(T_A\)

Lag time constant in anti-windup lag

0.040

p.u.

VRMAX

\(V_{RMAX}\)

Maximum regulator limit

7.300

p.u.

VRMIN

\(V_{RMIN}\)

Minimum regulator limit

-7.300

p.u.

VBMAX

\(V_{BMAX}\)

VB upper limit

18

p.u.

KE

\(K_E\)

Exciter integrator constant

1

p.u.

TE

\(T_E\)

Exciter integrator time constant

1

p.u.

KF

\(K_F\)

Feedback gain

0.100

TF

\(T_F\)

Feedback delay

1

non_zero,non_negative

KP

\(K_P\)

Potential circuit gain coeff.

4

KI

\(K_I\)

Potential circuit gain coeff.

0.100

ug

\(u_g\)

Generator online status

0

bool

Sn

\(S_m\)

Rated power from generator

0

MVA

Vn

\(V_m\)

Rated voltage from generator

0

kV

bus

\(bus\)

Bus idx of the generators

0

Variables#

Name

Symbol

Type

Description

Unit

Properties

LG_y

\(LG_{y}\)

State

State in lag transfer function

v_str

LA3_y

\(LA_{3 y}\)

State

State in lag TF

v_str

LA1_y

\(LA_{1 y}\)

State

State in lag transfer function

v_str

WF_x

\(WF_{x}\)

State

State in washout filter

v_str

omega

\(\omega\)

ExtState

Generator speed

v

\(v\)

Algeb

Input to exciter (bus v or Eterm)

v_str

vout

\(vout\)

Algeb

Exciter final output voltage

v_str

UEL

\(UEL\)

Algeb

Interface var for under exc. limiter

v_str

OEL

\(OEL\)

Algeb

Interface var for over exc. limiter

v_str

Vs

\(Vs\)

Algeb

Voltage compensation from PSS

v_str

vref

\(vref\)

Algeb

Reference voltage input

p.u.

v_str

vi

\(vi\)

Algeb

Total input voltages

p.u.

v_str

WF_y

\(WF_{y}\)

Algeb

Output of washout filter

v_str

SQE

\(SQE\)

Algeb

Square of error after mul

v_str

VB_y

\(VB_{y}\)

Algeb

Output of piecewise

v_str

vf

\(vf\)

ExtAlgeb

Excitation field voltage to generator

XadIfd

\(XadIfd\)

ExtAlgeb

Armature excitation current

a

\(a\)

ExtAlgeb

Bus voltage phase angle

vbus

\(vbus\)

ExtAlgeb

Bus voltage magnitude

vd

\(vd\)

ExtAlgeb

d-axis machine voltage

vq

\(vq\)

ExtAlgeb

q-axis machine voltage

Id

\(Id\)

ExtAlgeb

d-axis machine current

Iq

\(Iq\)

ExtAlgeb

q-axis machine current

Initialization Equations#

Name

Symbol

Type

Initial Value

LG_y

\(LG_{y}\)

State

\(v\)

LA3_y

\(LA_{3 y}\)

State

\(KA ue \left(- WF_{y} + vi\right)\)

LA1_y

\(LA_{1 y}\)

State

\(\frac{ue \left(HL_{zi} VB_{y} + HL_{zu} VBMAX\right)}{KE}\)

WF_x

\(WF_{x}\)

State

\(LA_{1 y}\)

omega

\(\omega\)

ExtState

v

\(v\)

Algeb

\(vbus\)

vout

\(vout\)

Algeb

\(ue vf_{0}\)

UEL

\(UEL\)

Algeb

\(UEL_{0}\)

OEL

\(OEL\)

Algeb

\(OEL_{0}\)

Vs

\(Vs\)

Algeb

\(0\)

vref

\(vref\)

Algeb

\(v + vb_{0}\)

vi

\(vi\)

Algeb

\(- v + vref\)

WF_y

\(WF_{y}\)

Algeb

\(0\)

SQE

\(SQE\)

Algeb

\(VE^{2} - 0.6084 XadIfd^{2}\)

VB_y

\(VB_{y}\)

Algeb

\(\operatorname{FixPiecewise}{\left(\left( LA_{3 y} ue, \ SQE \leq 0\right),\left( ue \left(LA_{3 y} + \sqrt{SQE}\right), \ \text{True}\right) \right)}\)

vf

\(vf\)

ExtAlgeb

XadIfd

\(XadIfd\)

ExtAlgeb

a

\(a\)

ExtAlgeb

vbus

\(vbus\)

ExtAlgeb

vd

\(vd\)

ExtAlgeb

vq

\(vq\)

ExtAlgeb

Id

\(Id\)

ExtAlgeb

Iq

\(Iq\)

ExtAlgeb

Differential Equations#

Name

Symbol

Type

RHS of Equation "T x' = f(x, y)"

T (LHS)

LG_y

\(LG_{y}\)

State

\(- LG_{y} + v\)

\(T_R\)

LA3_y

\(LA_{3 y}\)

State

\(KA ue \left(- WF_{y} + vi\right) - LA_{3 y}\)

\(T_A\)

LA1_y

\(LA_{1 y}\)

State

\(- KE LA_{1 y} + ue \left(HL_{zi} VB_{y} + HL_{zu} VBMAX\right)\)

\(T_E\)

WF_x

\(WF_{x}\)

State

\(LA_{1 y} - WF_{x}\)

\(T_F\)

omega

\(\omega\)

ExtState

\(0\)

Algebraic Equations#

Name

Symbol

Type

RHS of Equation "0 = g(x, y)"

v

\(v\)

Algeb

\(- v + vbus\)

vout

\(vout\)

Algeb

\(ue \left(LA_{1 y} - vout\right)\)

UEL

\(UEL\)

Algeb

\(- UEL + UEL_{0}\)

OEL

\(OEL\)

Algeb

\(- OEL + OEL_{0}\)

Vs

\(Vs\)

Algeb

\(- Vs\)

vref

\(vref\)

Algeb

\(- vref + vref_{0}\)

vi

\(vi\)

Algeb

\(ue \left(- LG_{y} + OEL + UEL + Vs - vi + vref\right)\)

WF_y

\(WF_{y}\)

Algeb

\(KF \left(LA_{1 y} - WF_{x}\right) - TF WF_{y}\)

SQE

\(SQE\)

Algeb

\(- SQE + VE^{2} - 0.6084 XadIfd^{2}\)

VB_y

\(VB_{y}\)

Algeb

\(- VB_{y} + \operatorname{FixPiecewise}{\left(\left( LA_{3 y} ue, \ SQE \leq 0\right),\left( ue \left(LA_{3 y} + \sqrt{SQE}\right), \ \text{True}\right) \right)}\)

vf

\(vf\)

ExtAlgeb

\(ue \left(- vf_{0} + vout\right)\)

XadIfd

\(XadIfd\)

ExtAlgeb

\(0\)

a

\(a\)

ExtAlgeb

\(0\)

vbus

\(vbus\)

ExtAlgeb

\(0\)

vd

\(vd\)

ExtAlgeb

\(0\)

vq

\(vq\)

ExtAlgeb

\(0\)

Id

\(Id\)

ExtAlgeb

\(0\)

Iq

\(Iq\)

ExtAlgeb

\(0\)

Services#

Name

Symbol

Equation

Type

ue

\(u_e\)

\(u ug\)

ConstService

VE

\(V_{E}\)

\(\sqrt{Id^{2} KI^{2} + 2 Id KI KP vq + Iq^{2} KI^{2} - 2 Iq KI KP vd + KP^{2} vd^{2} + KP^{2} vq^{2}}\)

VarService

V40

\(V40\)

\(\sqrt{VE^{2} - 0.6084 XadIfd^{2}}\)

ConstService

VR0

\(V_{R0}\)

\(KE vf_{0} - V_{40}\)

ConstService

vb0

\(V_{b0}\)

\(\frac{VR_{0}}{KA}\)

ConstService

VRMAXc

\(VRMAXc\)

\(VRMAX - 999 _zVRM + 999\)

ConstService

UEL0

\(UEL0\)

\(0\)

ConstService

OEL0

\(OEL0\)

\(0\)

ConstService

vref0

\(V_{ref0}\)

\(vref\)

PostInitService

zeros

\(zeros\)

\(0.0\)

ConstService

Discretes#

Name

Symbol

Type

Info

LA3_lim

\(lim_{LA3}\)

AntiWindup

Limiter in Lag

SL

\(SL\)

LessThan

HL

\(HL\)

HardLimiter

Hard limiter for VB

Blocks#

Name

Symbol

Type

Info

LG

\(LG\)

Lag

Sensing delay

LA3

\(LA3\)

LagAntiWindup

V_{R}, Lag Anti-Windup

LA1

\(LA1\)

Lag

WF

\(WF\)

Washout

V_F, stablizing circuit feedback, washout

VB

\(VB\)

Piecewise

Config Fields in [IEEET3]

Option

Symbol

Value

Info

Accepted values

allow_adjust

1

allow adjusting upper or lower limits

(0, 1)

adjust_lower

0

adjust lower limit

(0, 1)

adjust_upper

1

adjust upper limit

(0, 1)

ESAC1A#

Exciter ESAC1A.

Parameters#

Name

Symbol

Description

Default

Unit

Properties

idx

unique device idx

u

\(u\)

connection status

1

bool

name

device name

syn

Synchronous generator idx

mandatory

TR

\(T_R\)

Sensing time constant

0.010

p.u.

TB

\(T_B\)

Lag time constant in lead-lag

1

p.u.

non_negative

TC

\(T_C\)

Lead time constant in lead-lag

1

p.u.

non_negative

VAMAX

\(V_{AMAX}\)

V_A upper limit

999

p.u.

VAMIN

\(V_{AMIN}\)

V_A lower limit

-999

p.u.

KA

\(K_A\)

Regulator gain

80

TA

\(T_A\)

Lag time constant in regulator

0.040

p.u.

non_negative

VRMAX

\(V_{RMAX}\)

Max. exc. limit (0-unlimited)

7.300

p.u.

VRMIN

\(V_{RMIN}\)

Min. excitation limit

-7.300

p.u.

TE

\(T_E\)

Integrator time constant

0.800

p.u.

non_negative

E1

\(E_1\)

First saturation point

0

p.u.

SE1

\(S_{E1}\)

Value at first saturation point

0

p.u.

E2

\(E_2\)

Second saturation point

1

p.u.

SE2

\(S_{E2}\)

Value at second saturation point

1

p.u.

KC

\(K_C\)

Rectifier loading factor proportional to commutating reactance

0.100

KD

\(K_D\)

Ifd feedback gain

0

KE

\(K_E\)

Gain added to saturation

1

KF

\(K_F\)

Feedback gain

0.100

TF

\(T_{F1}\)

Feedback washout time constant

1

p.u.

non_zero,non_negative

Switch

\(S_w\)

Switch that PSS/E did not implement

0

bool

ug

\(u_g\)

Generator online status

0

bool

Sn

\(S_m\)

Rated power from generator

0

MVA

Vn

\(V_m\)

Rated voltage from generator

0

kV

bus

\(bus\)

Bus idx of the generators

0

Variables#

Name

Symbol

Type

Description

Unit

Properties

LG_y

\(LG_{y}\)

State

State in lag transfer function

v_str

LL_x

\(LL_{x}\)

State

State in lead-lag

v_str

LA_y

\(LA_{y}\)

State

State in lag TF

v_str

INT_y

\(INT_{y}\)

State

Integrator output

v_str,v_iter

WF_x

\(WF_{x}\)

State

State in washout filter

v_str

omega

\(\omega\)

ExtState

Generator speed

v

\(v\)

Algeb

Input to exciter (bus v or Eterm)

v_str

vout

\(vout\)

Algeb

Exciter final output voltage

v_str

UEL

\(UEL\)

Algeb

Interface var for under exc. limiter

v_str

OEL

\(OEL\)

Algeb

Interface var for over exc. limiter

v_str

Vs

\(Vs\)

Algeb

Voltage compensation from PSS

v_str

vref

\(vref\)

Algeb

Reference voltage input

p.u.

v_str

IN

\(IN\)

Algeb

Input to FEX

v_str,v_iter

FEX_y

\(FEX_{y}\)

Algeb

Output of piecewise

v_str,v_iter

vi

\(vi\)

Algeb

Total input voltages

p.u.

v_str

LL_y

\(LL_{y}\)

Algeb

Output of lead-lag

v_str

HVG_y

\(HVG_{y}\)

Algeb

HVGate output

v_str

LVG_y

\(LVG_{y}\)

Algeb

LVGate output

v_str

Se

\(Se\)

Algeb

saturation output

v_str

VFE

\(VFE\)

Algeb

Combined saturation feedback

p.u.

v_str

WF_y

\(WF_{y}\)

Algeb

Output of washout filter

v_str

vf

\(vf\)

ExtAlgeb

Excitation field voltage to generator

XadIfd

\(XadIfd\)

ExtAlgeb

Armature excitation current

a

\(a\)

ExtAlgeb

Bus voltage phase angle

vbus

\(vbus\)

ExtAlgeb

Bus voltage magnitude

Initialization Equations#

Name

Symbol

Type

Initial Value

LG_y

\(LG_{y}\)

State

\(v\)

LL_x

\(LL_{x}\)

State

\(vi\)

LA_y

\(LA_{y}\)

State

\(KA LL_{y}\)

INT_y

\(INT_{y}\)

State

\(FEX_{y} INT_{y} - vf_{0}\)

WF_x

\(WF_{x}\)

State

\(VFE\)

omega

\(\omega\)

ExtState

v

\(v\)

Algeb

\(vbus\)

vout

\(vout\)

Algeb

\(ue vf_{0}\)

UEL

\(UEL\)

Algeb

\(UEL_{0}\)

OEL

\(OEL\)

Algeb

\(OEL_{0}\)

Vs

\(Vs\)

Algeb

\(0\)

vref

\(vref\)

Algeb

\(v + \frac{VFE}{KA}\)

IN

\(IN\)

Algeb

\(- IN INT_{y} + KC XadIfd\)

FEX_y

\(FEX_{y}\)

Algeb

\(- FEX_{y} + \operatorname{FixPiecewise}{\left(\left( 1, \ IN \leq 0\right),\left( 1 - 0.577 IN, \ IN \leq 0.433\right),\left( \sqrt{0.75 - IN^{2}}, \ IN \leq 0.75\right),\left( 1.732 - 1.732 IN, \ IN \leq 1\right),\left( 0, \ \text{True}\right) \right)}\)

vi

\(vi\)

Algeb

\(- v + vref\)

LL_y

\(LL_{y}\)

Algeb

\(vi\)

HVG_y

\(HVG_{y}\)

Algeb

\(HVG_{lt z0} UEL + HVG_{lt z1} LA_{y}\)

LVG_y

\(LVG_{y}\)

Algeb

\(HVG_{y} LVG_{lt z1} + LVG_{lt z0} OEL\)

Se

\(Se\)

Algeb

\(SAT_{B} \left(INT_{y} - SAT_{A}\right)^{2} \operatorname{Indicator}{\left(INT_{y} > SAT_{A} \right)}\)

VFE

\(VFE\)

Algeb

\(INT_{y} KE + KD XadIfd + Se\)

WF_y

\(WF_{y}\)

Algeb

\(0\)

vf

\(vf\)

ExtAlgeb

XadIfd

\(XadIfd\)

ExtAlgeb

a

\(a\)

ExtAlgeb

vbus

\(vbus\)

ExtAlgeb

Differential Equations#

Name

Symbol

Type

RHS of Equation "T x' = f(x, y)"

T (LHS)

LG_y

\(LG_{y}\)

State

\(- LG_{y} + v\)

\(T_R\)

LL_x

\(LL_{x}\)

State

\(- LL_{x} + vi\)

\(T_B\)

LA_y

\(LA_{y}\)

State

\(KA LL_{y} - LA_{y}\)

\(T_A\)

INT_y

\(INT_{y}\)

State

\(ue \left(LVG_{y} - VFE\right)\)

\(T_E\)

WF_x

\(WF_{x}\)

State

\(VFE - WF_{x}\)

\(T_{F1}\)

omega

\(\omega\)

ExtState

\(0\)

Algebraic Equations#

Name

Symbol

Type

RHS of Equation "0 = g(x, y)"

v

\(v\)

Algeb

\(- v + vbus\)

vout

\(vout\)

Algeb

\(FEX_{y} INT_{y} ue - vout\)

UEL

\(UEL\)

Algeb

\(- UEL + UEL_{0}\)

OEL

\(OEL\)

Algeb

\(- OEL + OEL_{0}\)

Vs

\(Vs\)

Algeb

\(- Vs\)

vref

\(vref\)

Algeb

\(- vref + vref_{0}\)

IN

\(IN\)

Algeb

\(ue \left(- IN INT_{y} + KC XadIfd\right)\)

FEX_y

\(FEX_{y}\)

Algeb

\(- FEX_{y} + \operatorname{FixPiecewise}{\left(\left( 1, \ IN \leq 0\right),\left( 1 - 0.577 IN, \ IN \leq 0.433\right),\left( \sqrt{0.75 - IN^{2}}, \ IN \leq 0.75\right),\left( 1.732 - 1.732 IN, \ IN \leq 1\right),\left( 0, \ \text{True}\right) \right)}\)

vi

\(vi\)

Algeb

\(ue \left(- LG_{y} + OEL + UEL + Vs - vi + vref\right)\)

LL_y

\(LL_{y}\)

Algeb

\(LL_{LT1 z1} LL_{LT2 z1} \left(- LL_{x} + LL_{y}\right) + LL_{x} TB - LL_{y} TB + TC \left(- LL_{x} + vi\right)\)

HVG_y

\(HVG_{y}\)

Algeb

\(HVG_{lt z0} UEL + HVG_{lt z1} LA_{y} - HVG_{y}\)

LVG_y

\(LVG_{y}\)

Algeb

\(HVG_{y} LVG_{lt z1} + LVG_{lt z0} OEL - LVG_{y}\)

Se

\(Se\)

Algeb

\(ue \left(SAT_{B} SL_{z0} \left(INT_{y} - SAT_{A}\right)^{2} - Se\right)\)

VFE

\(VFE\)

Algeb

\(ue \left(INT_{y} KE + KD XadIfd + Se - VFE\right)\)

WF_y

\(WF_{y}\)

Algeb

\(KF \left(VFE - WF_{x}\right) - TF WF_{y}\)

vf

\(vf\)

ExtAlgeb

\(ue \left(- vf_{0} + vout\right)\)

XadIfd

\(XadIfd\)

ExtAlgeb

\(0\)

a

\(a\)

ExtAlgeb

\(0\)

vbus

\(vbus\)

ExtAlgeb

\(0\)

Services#

Name

Symbol

Equation

Type

ue

\(u_e\)

\(u ug\)

ConstService

UEL0

\(UEL0\)

\(-999\)

ConstService

OEL0

\(OEL0\)

\(999\)

ConstService

VAMAXu

\(VAMAXu\)

\(VAMAX ue - 999 ue + 999\)

ConstService

VAMINu

\(VAMINu\)

\(VAMIN ue + 999 ue - 999\)

ConstService

SAT_E1

\(E^{1c}_{SAT}\)

\(E_{1}\)

ConstService

SAT_E2

\(E^{2c}_{SAT}\)

\(E_{2} - 2 SAT_{zSE2} + 2\)

ConstService

SAT_SE1

\(SE^{1c}_{SAT}\)

\(SE_{1}\)

ConstService

SAT_SE2

\(SE^{2c}_{SAT}\)

\(- 2 SAT_{zSE2} + SE_{2} + 2\)

ConstService

SAT_a

\(a_{SAT}\)

\(\sqrt{\frac{SAT_{E1} SAT_{SE1}}{SAT_{E2} SAT_{SE2}}} \left(\operatorname{Indicator}{\left(SAT_{SE2} > 0 \right)} + \operatorname{Indicator}{\left(SAT_{SE2} < 0 \right)}\right)\)

ConstService

SAT_A

\(A^q_{SAT}\)

\(SAT_{E2} - \frac{SAT_{E1} - SAT_{E2}}{SAT_{a} - 1}\)

ConstService

SAT_B

\(B^q_{SAT}\)

\(\frac{SAT_{E2} SAT_{SE2} \left(SAT_{a} - 1\right)^{2} \left(\operatorname{Indicator}{\left(SAT_{a} > 0 \right)} + \operatorname{Indicator}{\left(SAT_{a} < 0 \right)}\right)}{\left(SAT_{E1} - SAT_{E2}\right)^{2}}\)

ConstService

vref0

\(V_{ref0}\)

\(vref\)

PostInitService

Discretes#

Name

Symbol

Type

Info

LL_LT1

\(LT_{LL}\)

LessThan

LL_LT2

\(LT_{LL}\)

LessThan

LA_lim

\(lim_{LA}\)

AntiWindup

Limiter in Lag

HVG_lt

\(None_{HVG}\)

LessThan

LVG_lt

\(None_{LVG}\)

LessThan

SL

\(SL\)

LessThan

Blocks#

Name

Symbol

Type

Info

FEX

\(FEX\)

Piecewise

Piecewise function FEX

LG

\(LG\)

Lag

Voltage transducer

LL

\(LL\)

LeadLag

V_A, Lead-lag compensator

LA

\(LA\)

LagAntiWindup

V_A, Anti-windup lag

HVG

\(HVG\)

HVGate

HVGate for under excitation

LVG

\(LVG\)

LVGate

HVGate for under excitation

SAT

\(SAT\)

ExcQuadSat

Field voltage saturation

INT

\(INT\)

Integrator

V_E, integrator

WF

\(WF\)

Washout

Stablizing circuit feedback

Config Fields in [ESAC1A]

Option

Symbol

Value

Info

Accepted values

allow_adjust

1

allow adjusting upper or lower limits

(0, 1)

adjust_lower

0

adjust lower limit

(0, 1)

adjust_upper

1

adjust upper limit

(0, 1)

ESST1A#

Exciter ESST1A model.

Reference:

[1] PowerWorld, Exciter ESST1A, [Online],

[2] NEPLAN, Exciters Models, [Online],

Available: https://www.powerworld.com/WebHelp/Content/TransientModels_HTML/Exciter%20ESST1A.htm

https://www.neplan.ch/wp-content/uploads/2015/08/Nep_EXCITERS1.pdf

Parameters#

Name

Symbol

Description

Default

Unit

Properties

idx

unique device idx

u

\(u\)

connection status

1

bool

name

device name

syn

Synchronous generator idx

mandatory

TR

\(T_R\)

Sensing time constant

0.010

VIMAX

\(V_{IMAX}\)

Max. input voltage

0.800

VIMIN

\(V_{IMIN}\)

Min. input voltage

-0.100

TB

\(T_B\)

Lag time constant in lead-lag

1

TC

\(T_C\)

Lead time constant in lead-lag

1

TB1

\(T_{B1}\)

Lag time constant in lead-lag 1

1

TC1

\(T_{C1}\)

Lead time constant in lead-lag 1

1

VAMAX

\(V_{AMAX}\)

V_A upper limit

999

p.u.

VAMIN

\(V_{AMIN}\)

V_A lower limit

-999

p.u.

KA

\(K_A\)

Regulator gain

80

TA

\(T_A\)

Lag time constant in regulator

0.040

ILR

\(I_{LR}\)

Exciter output current limite reference

1

KLR

\(K_{LR}\)

Exciter output current limiter gain

1

VRMAX

\(V_{RMAX}\)

Maximum voltage regulator output limit

7.300

p.u.

VRMIN

\(V_{RMIN}\)

Minimum voltage regulator output limit

-7.300

p.u.

KF

\(K_F\)

Feedback gain

0.100

TF

\(T_{F}\)

Feedback washout time constant

1

KC

\(K_C\)

Rectifier loading factor proportional to commutating reactance

0.100

UELc

\(UEL_c\)

Alternate UEL inputs, input code 1-3

1

VOSc

\(VOS_c\)

Alternate Stabilizer inputs, input code 1-2

1

ug

\(u_g\)

Generator online status

0

bool

Sn

\(S_m\)

Rated power from generator

0

MVA

Vn

\(V_m\)

Rated voltage from generator

0

kV

bus

\(bus\)

Bus idx of the generators

0

Variables#

Name

Symbol

Type

Description

Unit

Properties

LG_y

\(LG_{y}\)

State

State in lag transfer function

v_str

LL_x

\(LL_{x}\)

State

State in lead-lag

v_str

LL1_x

\(LL_{1 x}\)

State

State in lead-lag

v_str

LA_y

\(LA_{y}\)

State

State in lag TF

v_str

WF_x

\(WF_{x}\)

State

State in washout filter

v_str

omega

\(\omega\)

ExtState

Generator speed

v

\(v\)

Algeb

Input to exciter (bus v or Eterm)

v_str

vout

\(vout\)

Algeb

Exciter final output voltage

v_str

UEL

\(UEL\)

Algeb

Interface var for under exc. limiter

v_str

OEL

\(OEL\)

Algeb

Interface var for over exc. limiter

v_str

Vs

\(Vs\)

Algeb

Voltage compensation from PSS

v_str

vref

\(vref\)

Algeb

Reference voltage input

p.u.

v_str,v_iter

SG

\(SG\)

Algeb

SG

v_str

LR_x

\(LR_{x}\)

Algeb

Value before limiter

v_str

LR_y

\(LR_{y}\)

Algeb

Output after limiter and post gain

v_str

vi

\(vi\)

Algeb

Total input voltages

p.u.

v_str,v_iter

vil_x

\(vil_{x}\)

Algeb

Value before limiter

v_str

vil_y

\(vil_{y}\)

Algeb

Output after limiter and post gain

v_str

UEL2

\(UEL_{2}\)

Algeb

UEL_2 as HVG1 u1

v_str

HVG1_y

\(HVG_{1 y}\)

Algeb

HVGate output

v_str

LL_y

\(LL_{y}\)

Algeb

Output of lead-lag

v_str

LL1_y

\(LL_{1 y}\)

Algeb

Output of lead-lag

v_str

vas

\(vas\)

Algeb

V_A after subtraction, as HVG u2

v_str,v_iter

UEL3

\(UEL_{3}\)

Algeb

UEL_3 as HVG u1

v_str

HVG_y

\(HVG_{y}\)

Algeb

HVGate output

v_str

LVG_y

\(LVG_{y}\)

Algeb

LVGate output

v_str

vol_x

\(vol_{x}\)

Algeb

Value before limiter

v_str

vol_y

\(vol_{y}\)

Algeb

Output after limiter and post gain

v_str

WF_y

\(WF_{y}\)

Algeb

Output of washout filter

v_str

vf

\(vf\)

ExtAlgeb

Excitation field voltage to generator

XadIfd

\(XadIfd\)

ExtAlgeb

Armature excitation current

a

\(a\)

ExtAlgeb

Bus voltage phase angle

vbus

\(vbus\)

ExtAlgeb

Bus voltage magnitude

vd

\(vd\)

ExtAlgeb

d-axis machine voltage

vq

\(vq\)

ExtAlgeb

q-axis machine voltage

Initialization Equations#

Name

Symbol

Type

Initial Value

LG_y

\(LG_{y}\)

State

\(v\)

LL_x

\(LL_{x}\)

State

\(HVG_{1 y}\)

LL1_x

\(LL_{1 x}\)

State

\(LL_{y}\)

LA_y

\(LA_{y}\)

State

\(KA LL_{1 y}\)

WF_x

\(WF_{x}\)

State

\(LVG_{y}\)

omega

\(\omega\)

ExtState

v

\(v\)

Algeb

\(vbus\)

vout

\(vout\)

Algeb

\(ue vf_{0}\)

UEL

\(UEL\)

Algeb

\(UEL_{0}\)

OEL

\(OEL\)

Algeb

\(OEL_{0}\)

Vs

\(Vs\)

Algeb

\(0\)

vref

\(vref\)

Algeb

\(ue \left(- SG SWVOS_{s1} - SWUEL_{s1} UEL + v + \frac{LR_{y} - SG SWVOS_{s2} + vf_{0}}{KA}\right)\)

SG

\(SG\)

Algeb

\(SG_{0}\)

LR_x

\(LR_{x}\)

Algeb

\(KLR \left(- ILR + XadIfd\right)\)

LR_y

\(LR_{y}\)

Algeb

\(LR_{lim zi} LR_{x} + LR_{lim zl} zero\)

vi

\(vi\)

Algeb

\(ue \left(- LG_{y} + SG SWVOS_{s1} + SWUEL_{s1} UEL + Vs - WF_{y} + vref\right)\)

vil_x

\(vil_{x}\)

Algeb

\(vi\)

vil_y

\(vil_{y}\)

Algeb

\(VIMAX vil_{lim zu} + VIMIN vil_{lim zl} + vil_{lim zi} vil_{x}\)

UEL2

\(UEL_{2}\)

Algeb

\(ue \left(SWUEL_{s2} UEL + llim \left(1 - SWUEL_{s2}\right)\right)\)

HVG1_y

\(HVG_{1 y}\)

Algeb

\(HVG_{1 lt z0} UEL_{2} + HVG_{1 lt z1} vil_{y}\)

LL_y

\(LL_{y}\)

Algeb

\(HVG_{1 y}\)

LL1_y

\(LL_{1 y}\)

Algeb

\(LL_{y}\)

vas

\(vas\)

Algeb

\(ue \left(LA_{y} - LR_{y} + SG SWVOS_{s2}\right)\)

UEL3

\(UEL_{3}\)

Algeb

\(ue \left(SWUEL_{s3} UEL + llim \left(1 - SWUEL_{s3}\right)\right)\)

HVG_y

\(HVG_{y}\)

Algeb

\(HVG_{lt z0} UEL_{3} + HVG_{lt z1} vas\)

LVG_y

\(LVG_{y}\)

Algeb

\(HVG_{y} LVG_{lt z1} + LVG_{lt z0} OEL\)

vol_x

\(vol_{x}\)

Algeb

\(LVG_{y}\)

vol_y

\(vol_{y}\)

Algeb

\(efdl vol_{lim zl} + efdu vol_{lim zu} + vol_{lim zi} vol_{x}\)

WF_y

\(WF_{y}\)

Algeb

\(0\)

vf

\(vf\)

ExtAlgeb

XadIfd

\(XadIfd\)

ExtAlgeb

a

\(a\)

ExtAlgeb

vbus

\(vbus\)

ExtAlgeb

vd

\(vd\)

ExtAlgeb

vq

\(vq\)

ExtAlgeb

Differential Equations#

Name

Symbol

Type

RHS of Equation "T x' = f(x, y)"

T (LHS)

LG_y

\(LG_{y}\)

State

\(- LG_{y} + v\)

\(T_R\)

LL_x

\(LL_{x}\)

State

\(HVG_{1 y} - LL_{x}\)

\(T_B\)

LL1_x

\(LL_{1 x}\)

State

\(- LL_{1 x} + LL_{y}\)

\(T_{B1}\)

LA_y

\(LA_{y}\)

State

\(KA LL_{1 y} - LA_{y}\)

\(T_A\)

WF_x

\(WF_{x}\)

State

\(LVG_{y} - WF_{x}\)

\(T_{F}\)

omega

\(\omega\)

ExtState

\(0\)

Algebraic Equations#

Name

Symbol

Type

RHS of Equation "0 = g(x, y)"

v

\(v\)

Algeb

\(- v + vbus\)

vout

\(vout\)

Algeb

\(ue vol_{y} - vout\)

UEL

\(UEL\)

Algeb

\(- UEL + UEL_{0}\)

OEL

\(OEL\)

Algeb

\(- OEL + OEL_{0}\)

Vs

\(Vs\)

Algeb

\(- Vs\)

vref

\(vref\)

Algeb

\(- vref + vref_{0}\)

SG

\(SG\)

Algeb

\(- SG + SG_{0}\)

LR_x

\(LR_{x}\)

Algeb

\(KLR \left(- ILR + XadIfd\right) - LR_{x}\)

LR_y

\(LR_{y}\)

Algeb

\(LR_{lim zi} LR_{x} + LR_{lim zl} zero - LR_{y}\)

vi

\(vi\)

Algeb

\(ue \left(- LG_{y} + SG SWVOS_{s1} + SWUEL_{s1} UEL + Vs - WF_{y} + vref\right) - vi\)

vil_x

\(vil_{x}\)

Algeb

\(vi - vil_{x}\)

vil_y

\(vil_{y}\)

Algeb

\(VIMAX vil_{lim zu} + VIMIN vil_{lim zl} + vil_{lim zi} vil_{x} - vil_{y}\)

UEL2

\(UEL_{2}\)

Algeb

\(- UEL_{2} + ue \left(SWUEL_{s2} UEL + llim \left(1 - SWUEL_{s2}\right)\right)\)

HVG1_y

\(HVG_{1 y}\)

Algeb

\(HVG_{1 lt z0} UEL_{2} + HVG_{1 lt z1} vil_{y} - HVG_{1 y}\)

LL_y

\(LL_{y}\)

Algeb

\(LL_{LT1 z1} LL_{LT2 z1} \left(- LL_{x} + LL_{y}\right) + LL_{x} TB - LL_{y} TB + TC \left(HVG_{1 y} - LL_{x}\right)\)

LL1_y

\(LL_{1 y}\)

Algeb

\(LL_{1 LT1 z1} LL_{1 LT2 z1} \left(- LL_{1 x} + LL_{1 y}\right) + LL_{1 x} TB_{1} - LL_{1 y} TB_{1} + TC_{1} \left(- LL_{1 x} + LL_{y}\right)\)

vas

\(vas\)

Algeb

\(ue \left(LA_{y} - LR_{y} + SG SWVOS_{s2}\right) - vas\)

UEL3

\(UEL_{3}\)

Algeb

\(- UEL_{3} + ue \left(SWUEL_{s3} UEL + llim \left(1 - SWUEL_{s3}\right)\right)\)

HVG_y

\(HVG_{y}\)

Algeb

\(HVG_{lt z0} UEL_{3} + HVG_{lt z1} vas - HVG_{y}\)

LVG_y

\(LVG_{y}\)

Algeb

\(HVG_{y} LVG_{lt z1} + LVG_{lt z0} OEL - LVG_{y}\)

vol_x

\(vol_{x}\)

Algeb

\(LVG_{y} - vol_{x}\)

vol_y

\(vol_{y}\)

Algeb

\(efdl vol_{lim zl} + efdu vol_{lim zu} + vol_{lim zi} vol_{x} - vol_{y}\)

WF_y

\(WF_{y}\)

Algeb

\(KF \left(LVG_{y} - WF_{x}\right) - TF WF_{y}\)

vf

\(vf\)

ExtAlgeb

\(ue \left(- vf_{0} + vout\right)\)

XadIfd

\(XadIfd\)

ExtAlgeb

\(0\)

a

\(a\)

ExtAlgeb

\(0\)

vbus

\(vbus\)

ExtAlgeb

\(0\)

vd

\(vd\)

ExtAlgeb

\(0\)

vq

\(vq\)

ExtAlgeb

\(0\)

Services#

Name

Symbol

Equation

Type

ue

\(u_e\)

\(u ug\)

ConstService

UEL0

\(UEL0\)

\(-999\)

ConstService

OEL0

\(OEL0\)

\(999\)

ConstService

ulim

\(ulim\)

\(9999\)

ConstService

llim

\(llim\)

\(-9999\)

ConstService

SG0

\(SG0\)

\(0\)

ConstService

zero

\(zero\)

\(0\)

ConstService

VA0

\(V_{A0}\)

\(LR_{y} - SG SWVOS_{s2} + vf_{0}\)

PostInitService

vref0

\(V_{ref0}\)

\(vref\)

PostInitService

efdu

\(efd_{u}\)

\(- KC XadIfd + VRMAX \sqrt{vd^{2} + vq^{2}}\)

VarService

efdl

\(efd_{l}\)

\(VRMIN \sqrt{vd^{2} + vq^{2}}\)

VarService

Discretes#

Name

Symbol

Type

Info

SWUEL

\(SW_{UEL}\)

Switcher

SWVOS

\(SW_{VOS}\)

Switcher

LR_lim

\(lim_{LR}\)

HardLimiter

vil_lim

\(lim_{vil}\)

HardLimiter

HVG1_lt

\(None_{HVG1}\)

LessThan

LL_LT1

\(LT_{LL}\)

LessThan

LL_LT2

\(LT_{LL}\)

LessThan

LL1_LT1

\(LT_{LL1}\)

LessThan

LL1_LT2

\(LT_{LL1}\)

LessThan

LA_lim

\(lim_{LA}\)

AntiWindup

Limiter in Lag

HVG_lt

\(None_{HVG}\)

LessThan

LVG_lt

\(None_{LVG}\)

LessThan

vol_lim

\(lim_{vol}\)

HardLimiter

Blocks#

Name

Symbol

Type

Info

LG

\(LG\)

Lag

Voltage transducer

LR

\(LR\)

GainLimiter

Exciter output current gain limiter

vil

\(vil\)

GainLimiter

Exciter voltage input limiter

HVG1

\(HVG1\)

HVGate

HVGate after V_I

LL

\(LL\)

LeadLag

Lead-lag compensator

LL1

\(LL1\)

LeadLag

Lead-lag compensator 1

LA

\(LA\)

LagAntiWindup

V_A, Anti-windup lag

HVG

\(HVG\)

HVGate

HVGate for under excitation

LVG

\(LVG\)

LVGate

HVGate for over excitation

vol

\(vol\)

GainLimiter

Exciter output limiter

WF

\(WF\)

Washout

V_F, Stablizing circuit feedback

Config Fields in [ESST1A]

Option

Symbol

Value

Info

Accepted values

allow_adjust

1

allow adjusting upper or lower limits

(0, 1)

adjust_lower

0

adjust lower limit

(0, 1)

adjust_upper

1

adjust upper limit

(0, 1)

ESAC5A#

Exciter ESAC5A.

Parameters#

Name

Symbol

Description

Default

Unit

Properties

idx

unique device idx

u

\(u\)

connection status

1

bool

name

device name

syn

Synchronous generator idx

mandatory

TR

\(T_R\)

Sensing Time Constant

0.010

p.u

TA

\(T_A\)

Voltage Regulator Time Constant

0.040

p.u

KA

\(K_A\)

Voltage Regulator Gain

80

VRMIN

\(V_Rmin\)

V_R lower limit

-7.300

p.u

VRMAX

\(V_Rmax\)

V_R upper limit

7.300

p.u

TE

\(T_E\)

Integrator Time Constant

0.800

p.u

non_negative

KF

\(K_F\)

Feedback Gain

0.030

TF1

\(T_F_1\)

Lag Time Constant

1

p.u

TF2

\(T_F_2\)

Lead-Lag Time Constant (pole)

0.800

p.u

TF3

\(T_F_3\)

Lead-Lag Time Constant (zero)

1

p.u

KE

\(K_E\)

Exciter Feedback Gain

1

E1

\(E_1\)

First saturation point

0

p.u.

SE1

\(S_E1\)

Value at first saturation point

0

p.u.

E2

\(E_2\)

Second saturation point

1

p.u.

SE2

\(S_E2\)

Value at second saturation point

1

p.u.

ug

\(u_g\)

Generator online status

0

bool

Sn

\(S_m\)

Rated power from generator

0

MVA

Vn

\(V_m\)

Rated voltage from generator

0

kV

bus

\(bus\)

Bus idx of the generators

0

Variables#

Name

Symbol

Type

Description

Unit

Properties

LP_y

\(LP_{y}\)

State

State in lag transfer function

v_str

VR_y

\(VR_{y}\)

State

State in lag TF

v_str

LL_x

\(LL_{x}\)

State

State in lead-lag

v_str

WF_x

\(WF_{x}\)

State

State in washout filter

v_str

INT_y

\(INT_{y}\)

State

Integrator output

v_str

omega

\(\omega\)

ExtState

Generator speed

v

\(v\)

Algeb

Input to exciter (bus v or Eterm)

v_str

vout

\(vout\)

Algeb

Exciter final output voltage

v_str

UEL

\(UEL\)

Algeb

Interface var for under exc. limiter

v_str

OEL

\(OEL\)

Algeb

Interface var for over exc. limiter

v_str

Vs

\(Vs\)

Algeb

Voltage compensation from PSS

v_str

vref

\(vref\)

Algeb

Reference voltage input

p.u.

v_str

vi

\(vi\)

Algeb

Total voltage input

pu

v_str

LL_y

\(LL_{y}\)

Algeb

Output of lead-lag

v_str

WF_y

\(WF_{y}\)

Algeb

Output of washout filter

v_str

Se

\(Se\)

Algeb

saturation output

v_str

VFE

\(VFE\)

Algeb

Combined saturation feedback

p.u.

v_str

vf

\(vf\)

ExtAlgeb

Excitation field voltage to generator

XadIfd

\(XadIfd\)

ExtAlgeb

Armature excitation current

a

\(a\)

ExtAlgeb

Bus voltage phase angle

vbus

\(vbus\)

ExtAlgeb

Bus voltage magnitude

Initialization Equations#

Name

Symbol

Type

Initial Value

LP_y

\(LP_{y}\)

State

\(v\)

VR_y

\(VR_{y}\)

State

\(KA vi\)

LL_x

\(LL_{x}\)

State

\(VR_{y}\)

WF_x

\(WF_{x}\)

State

\(LL_{y}\)

INT_y

\(INT_{y}\)

State

\(vf_{0}\)

omega

\(\omega\)

ExtState

v

\(v\)

Algeb

\(vbus\)

vout

\(vout\)

Algeb

\(ue vf_{0}\)

UEL

\(UEL\)

Algeb

\(UEL_{0}\)

OEL

\(OEL\)

Algeb

\(OEL_{0}\)

Vs

\(Vs\)

Algeb

\(0\)

vref

\(vref\)

Algeb

\(v + \frac{VFE}{KA}\)

vi

\(vi\)

Algeb

\(ue \left(- v + vref\right)\)

LL_y

\(LL_{y}\)

Algeb

\(VR_{y}\)

WF_y

\(WF_{y}\)

Algeb

\(0\)

Se

\(Se\)

Algeb

\(SAT_{B} \left(INT_{y} - SAT_{A}\right)^{2} \operatorname{Indicator}{\left(INT_{y} > SAT_{A} \right)}\)

VFE

\(VFE\)

Algeb

\(INT_{y} KE + Se\)

vf

\(vf\)

ExtAlgeb

XadIfd

\(XadIfd\)

ExtAlgeb

a

\(a\)

ExtAlgeb

vbus

\(vbus\)

ExtAlgeb

Differential Equations#

Name

Symbol

Type

RHS of Equation "T x' = f(x, y)"

T (LHS)

LP_y

\(LP_{y}\)

State

\(- LP_{y} + v\)

\(T_R\)

VR_y

\(VR_{y}\)

State

\(KA vi - VR_{y}\)

\(T_A\)

LL_x

\(LL_{x}\)

State

\(- LL_{x} + VR_{y}\)

\(T_F_2\)

WF_x

\(WF_{x}\)

State

\(LL_{y} - WF_{x}\)

\(T_F_1\)

INT_y

\(INT_{y}\)

State

\(ue \left(- VFE + VR_{y}\right)\)

\(T_E\)

omega

\(\omega\)

ExtState

\(0\)

Algebraic Equations#

Name

Symbol

Type

RHS of Equation "0 = g(x, y)"

v

\(v\)

Algeb

\(- v + vbus\)

vout

\(vout\)

Algeb

\(INT_{y} ue - vout\)

UEL

\(UEL\)

Algeb

\(- UEL + UEL_{0}\)

OEL

\(OEL\)

Algeb

\(- OEL + OEL_{0}\)

Vs

\(Vs\)

Algeb

\(- Vs\)

vref

\(vref\)

Algeb

\(- vref + vref_{0}\)

vi

\(vi\)

Algeb

\(ue \left(- LP_{y} + Vs - WF_{y} + vref\right) - vi\)

LL_y

\(LL_{y}\)

Algeb

\(LL_{LT1 z1} LL_{LT2 z1} \left(- LL_{x} + LL_{y}\right) + LL_{x} TF_{2} - LL_{y} TF_{2} + TF_{3} \left(- LL_{x} + VR_{y}\right)\)

WF_y

\(WF_{y}\)

Algeb

\(KF \left(LL_{y} - WF_{x}\right) - TF_{1} WF_{y}\)

Se

\(Se\)

Algeb

\(ue \left(SAT_{B} SL_{z0} \left(INT_{y} - SAT_{A}\right)^{2} - Se\right)\)

VFE

\(VFE\)

Algeb

\(ue \left(INT_{y} KE + Se - VFE\right)\)

vf

\(vf\)

ExtAlgeb

\(ue \left(- vf_{0} + vout\right)\)

XadIfd

\(XadIfd\)

ExtAlgeb

\(0\)

a

\(a\)

ExtAlgeb

\(0\)

vbus

\(vbus\)

ExtAlgeb

\(0\)

Services#

Name

Symbol

Equation

Type

ue

\(u_e\)

\(u ug\)

ConstService

UEL0

\(UEL0\)

\(0\)

ConstService

OEL0

\(OEL0\)

\(0\)

ConstService

VRMAXu

\(VRMAXu\)

\(VRMAX ue - 999 ue + 999\)

ConstService

VRMINu

\(VRMINu\)

\(VRMIN ue + 999 ue - 999\)

ConstService

SAT_E1

\(E^{1c}_{SAT}\)

\(E_{1}\)

ConstService

SAT_E2

\(E^{2c}_{SAT}\)

\(E_{2} - 2 SAT_{zSE2} + 2\)

ConstService

SAT_SE1

\(SE^{1c}_{SAT}\)

\(SE_{1}\)

ConstService

SAT_SE2

\(SE^{2c}_{SAT}\)

\(- 2 SAT_{zSE2} + SE_{2} + 2\)

ConstService

SAT_a

\(a_{SAT}\)

\(\sqrt{\frac{SAT_{E1} SAT_{SE1}}{SAT_{E2} SAT_{SE2}}} \left(\operatorname{Indicator}{\left(SAT_{SE2} > 0 \right)} + \operatorname{Indicator}{\left(SAT_{SE2} < 0 \right)}\right)\)

ConstService

SAT_A

\(A^q_{SAT}\)

\(SAT_{E2} - \frac{SAT_{E1} - SAT_{E2}}{SAT_{a} - 1}\)

ConstService

SAT_B

\(B^q_{SAT}\)

\(\frac{SAT_{E2} SAT_{SE2} \left(SAT_{a} - 1\right)^{2} \left(\operatorname{Indicator}{\left(SAT_{a} > 0 \right)} + \operatorname{Indicator}{\left(SAT_{a} < 0 \right)}\right)}{\left(SAT_{E1} - SAT_{E2}\right)^{2}}\)

ConstService

vref0

\(V_{ref0}\)

\(vref\)

PostInitService

Discretes#

Name

Symbol

Type

Info

VR_lim

\(lim_{VR}\)

AntiWindup

Limiter in Lag

LL_LT1

\(LT_{LL}\)

LessThan

LL_LT2

\(LT_{LL}\)

LessThan

SL

\(SL\)

LessThan

Blocks#

Name

Symbol

Type

Info

LP

\(LP\)

Lag

Voltage transducer

VR

\(VR\)

LagAntiWindup

LL

\(LL\)

LeadLag

WF

\(WF\)

Washout

SAT

\(SAT\)

ExcQuadSat

Field voltage saturation

INT

\(INT\)

Integrator

V_E, integrator

Config Fields in [ESAC5A]

Option

Symbol

Value

Info

Accepted values

allow_adjust

1

allow adjusting upper or lower limits

(0, 1)

adjust_lower

0

adjust lower limit

(0, 1)

adjust_upper

1

adjust upper limit

(0, 1)