RenPlant#
Renewable plant control group.
Common Parameters: u, name
Available models: REPCA1
REPCA1#
REPCA1: renewable energy power plat control model.
The output of the model, Pext
and Qext
, are the increment signals
of active and reactive power for the electrical control model.
Notes for PSS/E DYR parser:
If ICONs M+1 and M+2 are set to 0 when using generator power, an error will be thrown by the parser, saying "<REPCA1> cannot retrieve <bus1> from <ACLine> using <line>: KeyError('Group <ACLine> does not contain device with idx=False')". Manual effort is required to run the converted file. In the REPCA1 sheet, provide the idx of a line that connects to the RenGen bus.
PSS/E enters ICONs M+3 as a string in single quotes. The pair of single quotes need to be removed, or the conversion will fail.
Parameters#
Name |
Symbol |
Description |
Default |
Unit |
Properties |
---|---|---|---|---|---|
idx |
unique device idx |
||||
u |
\(u\) |
connection status |
1 |
bool |
|
name |
device name |
||||
ree |
RenExciter idx |
mandatory |
|||
line |
Idx of line that connect to measured bus |
mandatory |
|||
busr |
Optional remote bus for voltage and freq. measurement |
||||
busf |
BusFreq idx for mode 2 |
||||
VCFlag |
Droop flag; 0-with droop if power factor ctrl, 1-line drop comp. |
bool |
mandatory |
||
RefFlag |
Q/V select; 0-Q control, 1-V control |
bool |
mandatory |
||
Fflag |
Frequency control flag; 0-disable, 1-enable |
bool |
mandatory |
||
PLflag |
Pline ctrl. flag; 0-disable, 1-enable |
1 |
bool |
||
Tfltr |
\(T_{fltr}\) |
V or Q filter time const. |
0.020 |
||
Kp |
\(K_p\) |
Q proportional gain |
1 |
||
Ki |
\(K_i\) |
Q integral gain |
0.100 |
||
Tft |
\(T_{ft}\) |
Lead time constant |
1 |
||
Tfv |
\(T_{fv}\) |
Lag time constant |
1 |
||
Vfrz |
\(V_{frz}\) |
Voltage below which s2 is frozen |
0.800 |
||
Rc |
\(R_c\) |
Line drop compensation R |
|||
Xc |
\(X_c\) |
Line drop compensation R |
|||
Kc |
\(K_c\) |
Reactive power compensation gain |
0 |
||
emax |
\(e_{max}\) |
Upper limit on deadband output |
999 |
||
emin |
\(e_{min}\) |
Lower limit on deadband output |
-999 |
||
dbd1 |
\(d_{bd1}\) |
Lower threshold for reactive power control deadband (<=0) |
-0.100 |
||
dbd2 |
\(d_{bd2}\) |
Upper threshold for reactive power control deadband (>=0) |
0.100 |
||
Qmax |
\(Q_{max}\) |
Upper limit on output of V-Q control |
999 |
||
Qmin |
\(Q_{min}\) |
Lower limit on output of V-Q control |
-999 |
||
Kpg |
\(K_{pg}\) |
Proportional gain for power control |
1 |
||
Kig |
\(K_{ig}\) |
Integral gain for power control |
0.100 |
||
Tp |
\(T_p\) |
Time constant for P measurement |
0.020 |
||
fdbd1 |
\(f_{dbd1}\) |
Lower threshold for freq. error deadband |
-0.000 |
p.u. (Hz) |
|
fdbd2 |
\(f_{dbd2}\) |
Upper threshold for freq. error deadband |
0.000 |
p.u. (Hz) |
|
femax |
\(f_{emax}\) |
Upper limit for freq. error |
0.050 |
||
femin |
\(f_{emin}\) |
Lower limit for freq. error |
-0.050 |
||
Pmax |
\(P_{max}\) |
Upper limit on power error (used by PI ctrl.) |
999 |
p.u. (MW) |
power |
Pmin |
\(P_{min}\) |
Lower limit on power error (used by PI ctrl.) |
-999 |
p.u. (MW) |
power |
Tg |
\(T_g\) |
Power controller lag time constant |
0.020 |
||
Ddn |
\(D_{dn}\) |
Reciprocal of droop for over-freq. conditions |
10 |
||
Dup |
\(D_{up}\) |
Reciprocal of droop for under-freq. conditions |
10 |
||
reg |
Retrieved RenGen idx |
||||
bus |
Retrieved bus idx |
||||
bus1 |
Retrieved Line.bus1 idx |
||||
bus2 |
Retrieved Line.bus2 idx |
||||
r |
Retrieved Line.r |
||||
x |
Retrieved Line.x |
Variables#
Name |
Symbol |
Type |
Description |
Unit |
Properties |
---|---|---|---|---|---|
s0_y |
\(y_{s_0}\) |
State |
State in lag transfer function |
v_str |
|
s1_y |
\(y_{s_1}\) |
State |
State in lag transfer function |
v_str |
|
s2_xi |
\(xi_{s_2}\) |
State |
Integrator output |
v_str |
|
s3_x |
\(x'_{s_3}\) |
State |
State in lead-lag |
v_str |
|
s4_y |
\(y_{s_4}\) |
State |
State in lag transfer function |
v_str |
|
s5_xi |
\(xi_{s_5}\) |
State |
Integrator output |
v_str |
|
s6_y |
\(y_{s_6}\) |
State |
State in lag transfer function |
v_str |
|
Vref |
\(Q_{ref}\) |
Algeb |
v_str |
||
Qlinef |
\(Q_{linef}\) |
Algeb |
v_str |
||
Refsel |
\(R_{efsel}\) |
Algeb |
v_str |
||
dbd_y |
\(y_{d^{bd}}\) |
Algeb |
Deadband type 1 output |
v_str |
|
enf |
\(e_{nf}\) |
Algeb |
e Hardlimit output before freeze |
v_str |
|
s2_ys |
\(ys_{s_2}\) |
Algeb |
PI summation before limit |
v_str |
|
s2_y |
\(y_{s_2}\) |
Algeb |
PI output |
v_str |
|
s3_y |
\(y_{s_3}\) |
Algeb |
Output of lead-lag |
v_str |
|
ferr |
\(f_{err}\) |
Algeb |
Frequency deviation |
p.u. (Hz) |
v_str |
fdbd_y |
\(y_{f^{dbd}}\) |
Algeb |
Deadband type 1 output |
v_str |
|
Plant_pref |
\(P_{ref}\) |
Algeb |
Plant P ref |
v_str |
|
Plerr |
\(P_{lerr}\) |
Algeb |
Pline error |
v_str |
|
Perr |
\(P_{err}\) |
Algeb |
Power error before fe limits |
v_str |
|
s5_ys |
\(ys_{s_5}\) |
Algeb |
PI summation before limit |
v_str |
|
s5_y |
\(y_{s_5}\) |
Algeb |
PI output |
v_str |
|
Pext |
\(P_{ext}\) |
ExtAlgeb |
Pref from RenExciter renamed as Pext |
||
Qext |
\(Q_{ext}\) |
ExtAlgeb |
Qref from RenExciter renamed as Qext |
||
v |
\(V\) |
ExtAlgeb |
Bus (or busr, if given) terminal voltage |
||
a |
\(\theta\) |
ExtAlgeb |
Bus (or busr, if given) phase angle |
||
f |
\(f\) |
ExtAlgeb |
Bus frequency |
p.u. |
|
v1 |
\(V_{1}\) |
ExtAlgeb |
Voltage at Line.bus1 |
||
v2 |
\(V_{2}\) |
ExtAlgeb |
Voltage at Line.bus2 |
||
a1 |
\(\theta_{1}\) |
ExtAlgeb |
Angle at Line.bus1 |
||
a2 |
\(\theta_{2}\) |
ExtAlgeb |
Angle at Line.bus2 |
Initialization Equations#
Name |
Symbol |
Type |
Initial Value |
---|---|---|---|
s0_y |
\(y_{s_0}\) |
State |
\(V_{comp} s_1^{SW_{VC}} + s_0^{SW_{VC}} \left(K_{c} Q_{line} + V\right)\) |
s1_y |
\(y_{s_1}\) |
State |
\(Q_{line}\) |
s2_xi |
\(xi_{s_2}\) |
State |
\(0.0\) |
s3_x |
\(x'_{s_3}\) |
State |
\(y_{s_2}\) |
s4_y |
\(y_{s_4}\) |
State |
\(P_{line}\) |
s5_xi |
\(xi_{s_5}\) |
State |
\(0.0\) |
s6_y |
\(y_{s_6}\) |
State |
\(y_{s_5}\) |
Vref |
\(Q_{ref}\) |
Algeb |
\(V_{ref0}\) |
Qlinef |
\(Q_{linef}\) |
Algeb |
\(Q_{line0}\) |
Refsel |
\(R_{efsel}\) |
Algeb |
\(s_0^{SW_{Ref}} \left(Q_{linef} - y_{s_1}\right) + s_1^{SW_{Ref}} \left(Q_{ref} - y_{s_0}\right)\) |
dbd_y |
\(y_{d^{bd}}\) |
Algeb |
\(1.0 z_l^{db_{d^{bd}}} \left(R_{efsel} - d_{bd1}\right) + 1.0 z_u^{db_{d^{bd}}} \left(R_{efsel} - d_{bd2}\right)\) |
enf |
\(e_{nf}\) |
Algeb |
\(e_{max} z_u^{e_{HL}} + e_{min} z_l^{e_{HL}} + y_{d^{bd}} z_i^{e_{HL}}\) |
s2_ys |
\(ys_{s_2}\) |
Algeb |
\(K_{p} e_{hld}\) |
s2_y |
\(y_{s_2}\) |
Algeb |
\(Q_{max} z_u^{lim_{s_2}} + Q_{min} z_l^{lim_{s_2}} + ys_{s_2} z_i^{lim_{s_2}}\) |
s3_y |
\(y_{s_3}\) |
Algeb |
\(y_{s_2}\) |
ferr |
\(f_{err}\) |
Algeb |
\(- f + f_{ref}\) |
fdbd_y |
\(y_{f^{dbd}}\) |
Algeb |
\(1.0 z_l^{db_{f^{dbd}}} \left(- f_{dbd1} + f_{err}\right) + 1.0 z_u^{db_{f^{dbd}}} \left(- f_{dbd2} + f_{err}\right)\) |
Plant_pref |
\(P_{ref}\) |
Algeb |
\(P_{line0}\) |
Plerr |
\(P_{lerr}\) |
Algeb |
\(P_{ref} - y_{s_4}\) |
Perr |
\(P_{err}\) |
Algeb |
\(D_{dn} y_{f^{dbd}} z_1^{f_{dlt0}} + D_{up} y_{f^{dbd}} z_0^{f_{dlt0}} + P_{lerr} s_1^{SW_{PL}}\) |
s5_ys |
\(ys_{s_5}\) |
Algeb |
\(K_{pg} \left(P_{err} z_i^{f_{eHL}} + f_{emax} z_u^{f_{eHL}} + f_{emin} z_l^{f_{eHL}}\right)\) |
s5_y |
\(y_{s_5}\) |
Algeb |
\(P_{max} z_u^{lim_{s_5}} + P_{min} z_l^{lim_{s_5}} + ys_{s_5} z_i^{lim_{s_5}}\) |
Pext |
\(P_{ext}\) |
ExtAlgeb |
|
Qext |
\(Q_{ext}\) |
ExtAlgeb |
|
v |
\(V\) |
ExtAlgeb |
|
a |
\(\theta\) |
ExtAlgeb |
|
f |
\(f\) |
ExtAlgeb |
|
v1 |
\(V_{1}\) |
ExtAlgeb |
|
v2 |
\(V_{2}\) |
ExtAlgeb |
|
a1 |
\(\theta_{1}\) |
ExtAlgeb |
|
a2 |
\(\theta_{2}\) |
ExtAlgeb |
Differential Equations#
Name |
Symbol |
Type |
RHS of Equation "T x' = f(x, y)" |
T (LHS) |
---|---|---|---|---|
s0_y |
\(y_{s_0}\) |
State |
\(V_{comp} s_1^{SW_{VC}} + s_0^{SW_{VC}} \left(K_{c} Q_{line} + V\right) - y_{s_0}\) |
\(T_{fltr}\) |
s1_y |
\(y_{s_1}\) |
State |
\(Q_{line} - y_{s_1}\) |
\(T_{fltr}\) |
s2_xi |
\(xi_{s_2}\) |
State |
\(K_{i} \left(e_{hld} + 2 y_{s_2} - 2 ys_{s_2}\right)\) |
|
s3_x |
\(x'_{s_3}\) |
State |
\(- x'_{s_3} + y_{s_2}\) |
\(T_{fv}\) |
s4_y |
\(y_{s_4}\) |
State |
\(P_{line} - y_{s_4}\) |
\(T_p\) |
s5_xi |
\(xi_{s_5}\) |
State |
\(K_{ig} \left(P_{err} z_i^{f_{eHL}} + f_{emax} z_u^{f_{eHL}} + f_{emin} z_l^{f_{eHL}} + 2 y_{s_5} - 2 ys_{s_5}\right)\) |
|
s6_y |
\(y_{s_6}\) |
State |
\(y_{s_5} - y_{s_6}\) |
\(T_g\) |
Algebraic Equations#
Name |
Symbol |
Type |
RHS of Equation "0 = g(x, y)" |
---|---|---|---|
Vref |
\(Q_{ref}\) |
Algeb |
\(- Q_{ref} + V_{ref0}\) |
Qlinef |
\(Q_{linef}\) |
Algeb |
\(Q_{line0} - Q_{linef}\) |
Refsel |
\(R_{efsel}\) |
Algeb |
\(- R_{efsel} + s_0^{SW_{Ref}} \left(Q_{linef} - y_{s_1}\right) + s_1^{SW_{Ref}} \left(Q_{ref} - y_{s_0}\right)\) |
dbd_y |
\(y_{d^{bd}}\) |
Algeb |
\(- y_{d^{bd}} + 1.0 z_l^{db_{d^{bd}}} \left(R_{efsel} - d_{bd1}\right) + 1.0 z_u^{db_{d^{bd}}} \left(R_{efsel} - d_{bd2}\right)\) |
enf |
\(e_{nf}\) |
Algeb |
\(e_{max} z_u^{e_{HL}} + e_{min} z_l^{e_{HL}} - e_{nf} + y_{d^{bd}} z_i^{e_{HL}}\) |
s2_ys |
\(ys_{s_2}\) |
Algeb |
\(K_{p} e_{hld} + xi_{s_2} - ys_{s_2}\) |
s2_y |
\(y_{s_2}\) |
Algeb |
\(Q_{max} z_u^{lim_{s_2}} + Q_{min} z_l^{lim_{s_2}} - y_{s_2} + ys_{s_2} z_i^{lim_{s_2}}\) |
s3_y |
\(y_{s_3}\) |
Algeb |
\(T_{ft} \left(- x'_{s_3} + y_{s_2}\right) + T_{fv} x'_{s_3} - T_{fv} y_{s_3} + \left(z_1^{LT_{s_3}}\right)^{2} \left(- x'_{s_3} + y_{s_3}\right)\) |
ferr |
\(f_{err}\) |
Algeb |
\(- f - f_{err} + f_{ref}\) |
fdbd_y |
\(y_{f^{dbd}}\) |
Algeb |
\(- y_{f^{dbd}} + 1.0 z_l^{db_{f^{dbd}}} \left(- f_{dbd1} + f_{err}\right) + 1.0 z_u^{db_{f^{dbd}}} \left(- f_{dbd2} + f_{err}\right)\) |
Plant_pref |
\(P_{ref}\) |
Algeb |
\(P_{line0} - P_{ref}\) |
Plerr |
\(P_{lerr}\) |
Algeb |
\(- P_{lerr} + P_{ref} - y_{s_4}\) |
Perr |
\(P_{err}\) |
Algeb |
\(D_{dn} y_{f^{dbd}} z_1^{f_{dlt0}} + D_{up} y_{f^{dbd}} z_0^{f_{dlt0}} - P_{err} + P_{lerr} s_1^{SW_{PL}}\) |
s5_ys |
\(ys_{s_5}\) |
Algeb |
\(K_{pg} \left(P_{err} z_i^{f_{eHL}} + f_{emax} z_u^{f_{eHL}} + f_{emin} z_l^{f_{eHL}}\right) + xi_{s_5} - ys_{s_5}\) |
s5_y |
\(y_{s_5}\) |
Algeb |
\(P_{max} z_u^{lim_{s_5}} + P_{min} z_l^{lim_{s_5}} - y_{s_5} + ys_{s_5} z_i^{lim_{s_5}}\) |
Pext |
\(P_{ext}\) |
ExtAlgeb |
\(s_1^{SW_{F}} y_{s_6}\) |
Qext |
\(Q_{ext}\) |
ExtAlgeb |
\(y_{s_3}\) |
v |
\(V\) |
ExtAlgeb |
\(0\) |
a |
\(\theta\) |
ExtAlgeb |
\(0\) |
f |
\(f\) |
ExtAlgeb |
\(0\) |
v1 |
\(V_{1}\) |
ExtAlgeb |
\(0\) |
v2 |
\(V_{2}\) |
ExtAlgeb |
\(0\) |
a1 |
\(\theta_{1}\) |
ExtAlgeb |
\(0\) |
a2 |
\(\theta_{2}\) |
ExtAlgeb |
\(0\) |
Services#
Name |
Symbol |
Equation |
Type |
---|---|---|---|
Isign |
\(I_{sign}\) |
\(0\) |
CurrentSign |
Iline |
\(I_{line}\) |
\(\frac{I_{sign} \left(V_{1} e^{i \theta_{1}} - V_{2} e^{i \theta_{2}}\right)}{r + i x}\) |
VarService |
Iline0 |
\(I_{line0}\) |
\(I_{line}\) |
ConstService |
Pline |
\(P_{line}\) |
\(\operatorname{re}{\left(I_{sign} V_{1} \operatorname{conj}{\left(\frac{V_{1} e^{i \theta_{1}} - V_{2} e^{i \theta_{2}}}{r + i x} \right)} e^{i \theta_{1}}\right)}\) |
VarService |
Pline0 |
\(P_{line0}\) |
\(P_{line}\) |
ConstService |
Qline |
\(Q_{line}\) |
\(\operatorname{im}{\left(I_{sign} V_{1} \operatorname{conj}{\left(\frac{V_{1} e^{i \theta_{1}} - V_{2} e^{i \theta_{2}}}{r + i x} \right)} e^{i \theta_{1}}\right)}\) |
VarService |
Qline0 |
\(Q_{line0}\) |
\(Q_{line}\) |
ConstService |
Vcomp |
\(V_{comp}\) |
\(\left|{I_{line} \left(R_{cs} + i X_{cs}\right) - V e^{i \theta}}\right|\) |
VarService |
Vref0 |
\(V_{ref0}\) |
\(V_{comp} s_1^{SW_{VC}} + s_0^{SW_{VC}} \left(K_{c} Q_{line0} + V\right)\) |
ConstService |
zf |
\(z_f\) |
\(f_{rz} \operatorname{Indicator}{\left(V < V_{frz} \right)}\) |
VarService |
eHld |
\(e_{hld}\) |
\(0\) |
VarHold |
Freq_ref |
\(f_{ref}\) |
\(1.0\) |
ConstService |
Discretes#
Name |
Symbol |
Type |
Info |
---|---|---|---|
SWVC |
\(SW_{VC}\) |
Switcher |
|
SWRef |
\(SW_{Ref}\) |
Switcher |
|
SWF |
\(SW_{F}\) |
Switcher |
|
SWPL |
\(SW_{PL}\) |
Switcher |
|
dbd_db |
\(db_{d^{bd}}\) |
DeadBand |
|
eHL |
\(e_{HL}\) |
Limiter |
Hardlimit on deadband output |
s2_lim |
\(lim_{s_2}\) |
HardLimiter |
|
s3_LT1 |
\(LT_{s_3}\) |
LessThan |
|
s3_LT2 |
\(LT_{s_3}\) |
LessThan |
|
fdbd_db |
\(db_{f^{dbd}}\) |
DeadBand |
|
fdlt0 |
\(f_{dlt0}\) |
LessThan |
frequency deadband output less than zero |
feHL |
\(f_{eHL}\) |
Limiter |
Limiter for power (frequency) error |
s5_lim |
\(lim_{s_5}\) |
HardLimiter |
Blocks#
Name |
Symbol |
Type |
Info |
---|---|---|---|
s0 |
\(s_0\) |
Lag |
V filter |
s1 |
\(s_1\) |
Lag |
|
dbd |
\(d^{bd}\) |
DeadBand1 |
|
s2 |
\(s_2\) |
PITrackAW |
PI controller for eHL output |
s3 |
\(s_3\) |
LeadLag |
|
s4 |
\(s_4\) |
Lag |
Pline filter |
fdbd |
\(f^{dbd}\) |
DeadBand1 |
frequency error deadband |
s5 |
\(s_5\) |
PITrackAW |
PI for fe limiter output |
s6 |
\(s_6\) |
Lag |
Output filter for Pext |
Config Fields in [REPCA1]
Option |
Symbol |
Value |
Info |
Accepted values |
---|---|---|---|---|
allow_adjust |
1 |
allow adjusting upper or lower limits |
(0, 1) |
|
adjust_lower |
0 |
adjust lower limit |
(0, 1) |
|
adjust_upper |
1 |
adjust upper limit |
(0, 1) |
|
kqs |
\(K_{qs}\) |
2 |
Tracking gain for reactive power PI controller |
|
ksg |
\(K_{sg}\) |
2 |
Tracking gain for active power PI controller |
|
freeze |
\(f_{rz}\) |
1 |
Voltage dip freeze flag; 1-enable, 0-disable |