RenPlant#

Renewable plant control group.

Common Parameters: u, name

Available models: REPCA1

REPCA1#

REPCA1: renewable energy power plat control model.

The output of the model, Pext and Qext, are the increment signals of active and reactive power for the electrical control model.

Notes for PSS/E DYR parser:

  1. If ICONs M+1 and M+2 are set to 0 when using generator power, an error will be thrown by the parser, saying "<REPCA1> cannot retrieve <bus1> from <ACLine> using <line>: KeyError('Group <ACLine> does not contain device with idx=False')". Manual effort is required to run the converted file. In the REPCA1 sheet, provide the idx of a line that connects to the RenGen bus.

  2. PSS/E enters ICONs M+3 as a string in single quotes. The pair of single quotes need to be removed, or the conversion will fail.

Parameters#

Name

Symbol

Description

Default

Unit

Properties

idx

unique device idx

u

\(u\)

connection status

1

bool

name

device name

ree

RenExciter idx

mandatory

line

Idx of line that connect to measured bus

mandatory

busr

Optional remote bus for voltage and freq. measurement

busf

BusFreq idx for mode 2

VCFlag

Droop flag; 0-with droop if power factor ctrl, 1-line drop comp.

bool

mandatory

RefFlag

Q/V select; 0-Q control, 1-V control

bool

mandatory

Fflag

Frequency control flag; 0-disable, 1-enable

bool

mandatory

PLflag

Pline ctrl. flag; 0-disable, 1-enable

True

bool

Tfltr

\(T_{fltr}\)

V or Q filter time const.

0.020

Kp

\(K_p\)

Q proportional gain

1

Ki

\(K_i\)

Q integral gain

0.100

Tft

\(T_{ft}\)

Lead time constant

1

Tfv

\(T_{fv}\)

Lag time constant

1

Vfrz

\(V_{frz}\)

Voltage below which s2 is frozen

0.800

Rc

\(R_c\)

Line drop compensation R

Xc

\(X_c\)

Line drop compensation R

Kc

\(K_c\)

Reactive power compensation gain

0

emax

\(e_{max}\)

Upper limit on deadband output

999

emin

\(e_{min}\)

Lower limit on deadband output

-999

dbd1

\(d_{bd1}\)

Lower threshold for reactive power control deadband (<=0)

-0.100

dbd2

\(d_{bd2}\)

Upper threshold for reactive power control deadband (>=0)

0.100

Qmax

\(Q_{max}\)

Upper limit on output of V-Q control

999

Qmin

\(Q_{min}\)

Lower limit on output of V-Q control

-999

Kpg

\(K_{pg}\)

Proportional gain for power control

1

Kig

\(K_{ig}\)

Integral gain for power control

0.100

Tp

\(T_p\)

Time constant for P measurement

0.020

fdbd1

\(f_{dbd1}\)

Lower threshold for freq. error deadband

-0.000

p.u. (Hz)

fdbd2

\(f_{dbd2}\)

Upper threshold for freq. error deadband

0.000

p.u. (Hz)

femax

\(f_{emax}\)

Upper limit for freq. error

0.050

femin

\(f_{emin}\)

Lower limit for freq. error

-0.050

Pmax

\(P_{max}\)

Upper limit on power error (used by PI ctrl.)

999

p.u. (MW)

power

Pmin

\(P_{min}\)

Lower limit on power error (used by PI ctrl.)

-999

p.u. (MW)

power

Tg

\(T_g\)

Power controller lag time constant

0.020

Ddn

\(D_{dn}\)

Reciprocal of droop for over-freq. conditions

10

Dup

\(D_{up}\)

Reciprocal of droop for under-freq. conditions

10

reg

Retrieved RenGen idx

bus

Retrieved bus idx

bus1

Retrieved Line.bus1 idx

bus2

Retrieved Line.bus2 idx

r

Retrieved Line.r

x

Retrieved Line.x

Variables#

Name

Symbol

Type

Description

Unit

Properties

s0_y

\(y_{s_0}\)

State

State in lag transfer function

v_str

s1_y

\(y_{s_1}\)

State

State in lag transfer function

v_str

s2_xi

\(xi_{s_2}\)

State

Integrator output

v_str

s3_x

\(x'_{s_3}\)

State

State in lead-lag

v_str

s4_y

\(y_{s_4}\)

State

State in lag transfer function

v_str

s5_xi

\(xi_{s_5}\)

State

Integrator output

v_str

s6_y

\(y_{s_6}\)

State

State in lag transfer function

v_str

Vref

\(Q_{ref}\)

Algeb

v_str

Qlinef

\(Q_{linef}\)

Algeb

v_str

Refsel

\(R_{efsel}\)

Algeb

v_str

dbd_y

\(y_{d^{bd}}\)

Algeb

Deadband type 1 output

v_str

enf

\(e_{nf}\)

Algeb

e Hardlimit output before freeze

v_str

s2_ys

\(ys_{s_2}\)

Algeb

PI summation before limit

v_str

s2_y

\(y_{s_2}\)

Algeb

PI output

v_str

s3_y

\(y_{s_3}\)

Algeb

Output of lead-lag

v_str

ferr

\(f_{err}\)

Algeb

Frequency deviation

p.u. (Hz)

v_str

fdbd_y

\(y_{f^{dbd}}\)

Algeb

Deadband type 1 output

v_str

Plant_pref

\(P_{ref}\)

Algeb

Plant P ref

v_str

Plerr

\(P_{lerr}\)

Algeb

Pline error

v_str

Perr

\(P_{err}\)

Algeb

Power error before fe limits

v_str

s5_ys

\(ys_{s_5}\)

Algeb

PI summation before limit

v_str

s5_y

\(y_{s_5}\)

Algeb

PI output

v_str

Pext

\(P_{ext}\)

ExtAlgeb

Pref from RenExciter renamed as Pext

Qext

\(Q_{ext}\)

ExtAlgeb

Qref from RenExciter renamed as Qext

v

\(V\)

ExtAlgeb

Bus (or busr, if given) terminal voltage

a

\(\theta\)

ExtAlgeb

Bus (or busr, if given) phase angle

f

\(f\)

ExtAlgeb

Bus frequency

p.u.

v1

\(V_{1}\)

ExtAlgeb

Voltage at Line.bus1

v2

\(V_{2}\)

ExtAlgeb

Voltage at Line.bus2

a1

\(\theta_{1}\)

ExtAlgeb

Angle at Line.bus1

a2

\(\theta_{2}\)

ExtAlgeb

Angle at Line.bus2

Initialization Equations#

Name

Symbol

Type

Initial Value

s0_y

\(y_{s_0}\)

State

\(V_{comp} s_1^{SW_{VC}} + s_0^{SW_{VC}} \left(K_{c} Q_{line} + V\right)\)

s1_y

\(y_{s_1}\)

State

\(Q_{line}\)

s2_xi

\(xi_{s_2}\)

State

\(0.0\)

s3_x

\(x'_{s_3}\)

State

\(y_{s_2}\)

s4_y

\(y_{s_4}\)

State

\(P_{line}\)

s5_xi

\(xi_{s_5}\)

State

\(0.0\)

s6_y

\(y_{s_6}\)

State

\(y_{s_5}\)

Vref

\(Q_{ref}\)

Algeb

\(V_{ref0}\)

Qlinef

\(Q_{linef}\)

Algeb

\(Q_{line0}\)

Refsel

\(R_{efsel}\)

Algeb

\(s_0^{SW_{Ref}} \left(Q_{linef} - y_{s_1}\right) + s_1^{SW_{Ref}} \left(Q_{ref} - y_{s_0}\right)\)

dbd_y

\(y_{d^{bd}}\)

Algeb

\(1.0 z_l^{db_{d^{bd}}} \left(R_{efsel} - d_{bd1}\right) + 1.0 z_u^{db_{d^{bd}}} \left(R_{efsel} - d_{bd2}\right)\)

enf

\(e_{nf}\)

Algeb

\(e_{max} z_u^{e_{HL}} + e_{min} z_l^{e_{HL}} + y_{d^{bd}} z_i^{e_{HL}}\)

s2_ys

\(ys_{s_2}\)

Algeb

\(K_{p} e_{hld}\)

s2_y

\(y_{s_2}\)

Algeb

\(Q_{max} z_u^{lim_{s_2}} + Q_{min} z_l^{lim_{s_2}} + ys_{s_2} z_i^{lim_{s_2}}\)

s3_y

\(y_{s_3}\)

Algeb

\(y_{s_2}\)

ferr

\(f_{err}\)

Algeb

\(- f + f_{ref}\)

fdbd_y

\(y_{f^{dbd}}\)

Algeb

\(1.0 z_l^{db_{f^{dbd}}} \left(- f_{dbd1} + f_{err}\right) + 1.0 z_u^{db_{f^{dbd}}} \left(- f_{dbd2} + f_{err}\right)\)

Plant_pref

\(P_{ref}\)

Algeb

\(P_{line0}\)

Plerr

\(P_{lerr}\)

Algeb

\(P_{ref} - y_{s_4}\)

Perr

\(P_{err}\)

Algeb

\(D_{dn} y_{f^{dbd}} z_1^{f_{dlt0}} + D_{up} y_{f^{dbd}} z_0^{f_{dlt0}} + P_{lerr} s_1^{SW_{PL}}\)

s5_ys

\(ys_{s_5}\)

Algeb

\(K_{pg} \left(P_{err} z_i^{f_{eHL}} + f_{emax} z_u^{f_{eHL}} + f_{emin} z_l^{f_{eHL}}\right)\)

s5_y

\(y_{s_5}\)

Algeb

\(P_{max} z_u^{lim_{s_5}} + P_{min} z_l^{lim_{s_5}} + ys_{s_5} z_i^{lim_{s_5}}\)

Pext

\(P_{ext}\)

ExtAlgeb

Qext

\(Q_{ext}\)

ExtAlgeb

v

\(V\)

ExtAlgeb

a

\(\theta\)

ExtAlgeb

f

\(f\)

ExtAlgeb

v1

\(V_{1}\)

ExtAlgeb

v2

\(V_{2}\)

ExtAlgeb

a1

\(\theta_{1}\)

ExtAlgeb

a2

\(\theta_{2}\)

ExtAlgeb

Differential Equations#

Name

Symbol

Type

RHS of Equation "T x' = f(x, y)"

T (LHS)

s0_y

\(y_{s_0}\)

State

\(V_{comp} s_1^{SW_{VC}} + s_0^{SW_{VC}} \left(K_{c} Q_{line} + V\right) - y_{s_0}\)

\(T_{fltr}\)

s1_y

\(y_{s_1}\)

State

\(Q_{line} - y_{s_1}\)

\(T_{fltr}\)

s2_xi

\(xi_{s_2}\)

State

\(K_{i} \left(e_{hld} + 2 y_{s_2} - 2 ys_{s_2}\right)\)

s3_x

\(x'_{s_3}\)

State

\(- x'_{s_3} + y_{s_2}\)

\(T_{fv}\)

s4_y

\(y_{s_4}\)

State

\(P_{line} - y_{s_4}\)

\(T_p\)

s5_xi

\(xi_{s_5}\)

State

\(K_{ig} \left(P_{err} z_i^{f_{eHL}} + f_{emax} z_u^{f_{eHL}} + f_{emin} z_l^{f_{eHL}} + 2 y_{s_5} - 2 ys_{s_5}\right)\)

s6_y

\(y_{s_6}\)

State

\(y_{s_5} - y_{s_6}\)

\(T_g\)

Algebraic Equations#

Name

Symbol

Type

RHS of Equation "0 = g(x, y)"

Vref

\(Q_{ref}\)

Algeb

\(- Q_{ref} + V_{ref0}\)

Qlinef

\(Q_{linef}\)

Algeb

\(Q_{line0} - Q_{linef}\)

Refsel

\(R_{efsel}\)

Algeb

\(- R_{efsel} + s_0^{SW_{Ref}} \left(Q_{linef} - y_{s_1}\right) + s_1^{SW_{Ref}} \left(Q_{ref} - y_{s_0}\right)\)

dbd_y

\(y_{d^{bd}}\)

Algeb

\(- y_{d^{bd}} + 1.0 z_l^{db_{d^{bd}}} \left(R_{efsel} - d_{bd1}\right) + 1.0 z_u^{db_{d^{bd}}} \left(R_{efsel} - d_{bd2}\right)\)

enf

\(e_{nf}\)

Algeb

\(e_{max} z_u^{e_{HL}} + e_{min} z_l^{e_{HL}} - e_{nf} + y_{d^{bd}} z_i^{e_{HL}}\)

s2_ys

\(ys_{s_2}\)

Algeb

\(K_{p} e_{hld} + xi_{s_2} - ys_{s_2}\)

s2_y

\(y_{s_2}\)

Algeb

\(Q_{max} z_u^{lim_{s_2}} + Q_{min} z_l^{lim_{s_2}} - y_{s_2} + ys_{s_2} z_i^{lim_{s_2}}\)

s3_y

\(y_{s_3}\)

Algeb

\(T_{ft} \left(- x'_{s_3} + y_{s_2}\right) + T_{fv} x'_{s_3} - T_{fv} y_{s_3} + \left(z_1^{LT_{s_3}}\right)^{2} \left(- x'_{s_3} + y_{s_3}\right)\)

ferr

\(f_{err}\)

Algeb

\(- f - f_{err} + f_{ref}\)

fdbd_y

\(y_{f^{dbd}}\)

Algeb

\(- y_{f^{dbd}} + 1.0 z_l^{db_{f^{dbd}}} \left(- f_{dbd1} + f_{err}\right) + 1.0 z_u^{db_{f^{dbd}}} \left(- f_{dbd2} + f_{err}\right)\)

Plant_pref

\(P_{ref}\)

Algeb

\(P_{line0} - P_{ref}\)

Plerr

\(P_{lerr}\)

Algeb

\(- P_{lerr} + P_{ref} - y_{s_4}\)

Perr

\(P_{err}\)

Algeb

\(D_{dn} y_{f^{dbd}} z_1^{f_{dlt0}} + D_{up} y_{f^{dbd}} z_0^{f_{dlt0}} - P_{err} + P_{lerr} s_1^{SW_{PL}}\)

s5_ys

\(ys_{s_5}\)

Algeb

\(K_{pg} \left(P_{err} z_i^{f_{eHL}} + f_{emax} z_u^{f_{eHL}} + f_{emin} z_l^{f_{eHL}}\right) + xi_{s_5} - ys_{s_5}\)

s5_y

\(y_{s_5}\)

Algeb

\(P_{max} z_u^{lim_{s_5}} + P_{min} z_l^{lim_{s_5}} - y_{s_5} + ys_{s_5} z_i^{lim_{s_5}}\)

Pext

\(P_{ext}\)

ExtAlgeb

\(s_1^{SW_{F}} y_{s_6}\)

Qext

\(Q_{ext}\)

ExtAlgeb

\(y_{s_3}\)

v

\(V\)

ExtAlgeb

\(0\)

a

\(\theta\)

ExtAlgeb

\(0\)

f

\(f\)

ExtAlgeb

\(0\)

v1

\(V_{1}\)

ExtAlgeb

\(0\)

v2

\(V_{2}\)

ExtAlgeb

\(0\)

a1

\(\theta_{1}\)

ExtAlgeb

\(0\)

a2

\(\theta_{2}\)

ExtAlgeb

\(0\)

Services#

Name

Symbol

Equation

Type

Isign

\(I_{sign}\)

\(0\)

CurrentSign

Iline

\(I_{line}\)

\(\frac{I_{sign} \left(V_{1} e^{i \theta_{1}} - V_{2} e^{i \theta_{2}}\right)}{r + i x}\)

VarService

Iline0

\(I_{line0}\)

\(I_{line}\)

ConstService

Pline

\(P_{line}\)

\(\operatorname{re}{\left(I_{sign} V_{1} \operatorname{conj}{\left(\frac{V_{1} e^{i \theta_{1}} - V_{2} e^{i \theta_{2}}}{r + i x} \right)} e^{i \theta_{1}}\right)}\)

VarService

Pline0

\(P_{line0}\)

\(P_{line}\)

ConstService

Qline

\(Q_{line}\)

\(\operatorname{im}{\left(I_{sign} V_{1} \operatorname{conj}{\left(\frac{V_{1} e^{i \theta_{1}} - V_{2} e^{i \theta_{2}}}{r + i x} \right)} e^{i \theta_{1}}\right)}\)

VarService

Qline0

\(Q_{line0}\)

\(Q_{line}\)

ConstService

Vcomp

\(V_{comp}\)

\(\left|{I_{line} \left(R_{cs} + i X_{cs}\right) - V e^{i \theta}}\right|\)

VarService

Vref0

\(V_{ref0}\)

\(V_{comp} s_1^{SW_{VC}} + s_0^{SW_{VC}} \left(K_{c} Q_{line0} + V\right)\)

ConstService

zf

\(z_f\)

\(f_{rz} \operatorname{Indicator}{\left(V < V_{frz} \right)}\)

VarService

eHld

\(e_{hld}\)

\(0\)

VarHold

Freq_ref

\(f_{ref}\)

\(1.0\)

ConstService

Discretes#

Name

Symbol

Type

Info

SWVC

\(SW_{VC}\)

Switcher

SWRef

\(SW_{Ref}\)

Switcher

SWF

\(SW_{F}\)

Switcher

SWPL

\(SW_{PL}\)

Switcher

dbd_db

\(db_{d^{bd}}\)

DeadBand

eHL

\(e_{HL}\)

Limiter

Hardlimit on deadband output

s2_lim

\(lim_{s_2}\)

HardLimiter

s3_LT1

\(LT_{s_3}\)

LessThan

s3_LT2

\(LT_{s_3}\)

LessThan

fdbd_db

\(db_{f^{dbd}}\)

DeadBand

fdlt0

\(f_{dlt0}\)

LessThan

frequency deadband output less than zero

feHL

\(f_{eHL}\)

Limiter

Limiter for power (frequency) error

s5_lim

\(lim_{s_5}\)

HardLimiter

Blocks#

Name

Symbol

Type

Info

s0

\(s_0\)

Lag

V filter

s1

\(s_1\)

Lag

dbd

\(d^{bd}\)

DeadBand1

s2

\(s_2\)

PITrackAW

PI controller for eHL output

s3

\(s_3\)

LeadLag

s4

\(s_4\)

Lag

Pline filter

fdbd

\(f^{dbd}\)

DeadBand1

frequency error deadband

s5

\(s_5\)

PITrackAW

PI for fe limiter output

s6

\(s_6\)

Lag

Output filter for Pext

Config Fields in [REPCA1]

Option

Symbol

Value

Info

Accepted values

allow_adjust

1

allow adjusting upper or lower limits

(0, 1)

adjust_lower

0

adjust lower limit

(0, 1)

adjust_upper

1

adjust upper limit

(0, 1)

kqs

\(K_{qs}\)

2

Tracking gain for reactive power PI controller

ksg

\(K_{sg}\)

2

Tracking gain for active power PI controller

freeze

\(f_{rz}\)

1

Voltage dip freeze flag; 1-enable, 0-disable