Blocks#
Background#
The block library contains commonly used blocks (such as transfer functions and
nonlinear functions). Variables and equations are pre-defined for blocks to be
used as "lego pieces" for scripting DAE models. The base class for blocks is
andes.core.block.Block
.
The supported blocks include Lag
, LeadLag
, Washout
,
LeadLagLimit
, PIController
. In addition, the base class for piece-wise
nonlinear functions, Piecewise
is provided. Piecewise
is used for
implementing the quadratic saturation function MagneticQuadSat
and
exponential saturation function MagneticExpSat
.
All variables in a block must be defined as attributes in the constructor, just
like variable definition in models. The difference is that the variables are
"exported" from a block to the capturing model. All exported variables need to
placed in a dictionary, self.vars
at the end of the block constructor.
Blocks can be nested as advanced usage. See the following API documentation for more details.
- class andes.core.block.Block(name: str | None = None, tex_name: str | None = None, info: str | None = None, namespace: str = 'local')[source]
Base class for control blocks.
Blocks are meant to be instantiated as Model attributes to provide pre-defined equation sets. Subclasses must overload the __init__ method to take custom inputs. Subclasses of Block must overload the define method to provide initialization and equation strings. Exported variables, services and blocks must be constructed into a dictionary
self.vars
at the end of the constructor.Blocks can be nested. A block can have blocks but itself as attributes and therefore reuse equations. When a block has sub-blocks, the outer block must be constructed with a``name``.
Nested block works in the following way: the parent block modifies the sub-block's
name
attribute by prepending the parent block's name at the construction phase. The parent block then exports the sub-block as a whole. When the parent Model class picks up the block, it will recursively import the variables in the block and the sub-blocks correctly. See the example section for details.- Parameters:
- namestr, optional
Block name
- tex_namestr, optional
Block LaTeX name
- infostr, optional
Block description.
- namespacestr, local or parent
Namespace of the exported elements. If 'local', the block name will be prepended by the parent. If 'parent', the original element name will be used when exporting.
Warning
It is a good practice to avoid more than one level of nesting, to avoid multi-underscore variable names.
Examples
Example for two-level nested blocks. Suppose we have the following hierarchy
SomeModel instance M contains an instance of LeadLag block named A, which contains a Lag instance named B. Both A and B exports two variables
x
andy
.In the code for SomeModel, the following code is used to instantiate LeadLag
class SomeModel: def __init__(...) ... self.A = LeadLag(name='A', u=self.foo1, T1=self.foo2, T2=self.foo3)
To use Lag in the LeadLag code, the following lines are found in the constructor of LeadLag
class LeadLag: def __init__(name, ...) ... self.B = Lag(u=self.y, K=self.K, T=self.T) # register `self.B` with the name `A` self.vars = {..., 'B': self.B}
When instantiating any block instance, its
__setattr__
function assigns names to exported variables and blocks. For the LeadLag instance with the nameA
, its member attributeB
is assigned the nameA_B
by convention. That is,A_B
will be set to B.name.When A is picked up by
SomeModel.__setattr__
, B is captured from A's exports with the nameA_B
. Recursively, B's variables are exported, Recall that B.name is nowA_B
, following the naming rule (parent block's name + variable name), B's internal variables becomeA_B_x
andA_B_y
.Again, the LeadLag instance name (
A.name
in this example) must be given when instantiating in SomeModel's constructor to ensure correct name propagation. If there is more than one level of nesting, other than the terminal-level block, all names of the parent blocks must be provided at instantiation.In such a way, B's
define()
needs no modification since the naming rule is the same. For example, B's internal y is always{self.name}_y
, although the nested B has gotten a new nameA_B
.- define()[source]
Function for setting the initialization and equation strings for internal variables. This method must be implemented by subclasses.
The equations should be written with the "final" variable names. Let's say the block instance is named blk (kept at
self.name
of the block), and an internal variable v is defined. The internal variable will be captured asblk_v
by the parent model. Therefore, all equations should use{self.name}_v
to represent variablev
, where{self.name}
is the name of the block at run time.On the other hand, the names of externally provided parameters or variables are obtained by directly accessing the
name
attribute. For example, ifself.T
is a parameter provided through the block constructor,{self.T.name}
should be used in the equation.See also
PIController.define
Equations for the PI Controller block
Examples
An internal variable
v
has a trivial equationT = v
, where T is a parameter provided to the block constructor.In the model, one has
class SomeModel(): def __init__(...) self.input = Algeb() self.T = Param() self.blk = ExampleBlock(u=self.input, T=self.T)
In the ExampleBlock function, the internal variable is defined in the constructor as
class ExampleBlock(): def __init__(...): self.v = Algeb() self.vars = {'v', self.v}
In the
define
, the equation is provided asdef define(self): self.v.v_str = '{self.T.name}' self.v.e_str = '{self.T.name} - {self.name}_v'
In the parent model,
v
from the block will be captured asblk_v
, and the equation will evaluate intoself.blk_v.v_str = 'T' self.blk_v.e_str = 'T - blk_v'
Transfer Functions#
The following transfer function blocks have been implemented. They can be imported to build new models.
Linear#
- class andes.core.block.Gain(u, K, name=None, tex_name=None, info=None)[source]
Gain block.
┌───┐ u -> │ K │ -> y └───┘
Exports an algebraic output y.
- define()[source]
Implemented equation and the initial condition are
\[\begin{split}y = K u \\ y^{(0)} = K u^{(0)}\end{split}\]
- class andes.core.block.GainLimiter(u, K, R, lower, upper, no_lower=False, no_upper=False, sign_lower=1, sign_upper=1, name=None, tex_name=None, info=None)[source]
Gain followed by a limiter and another gain.
Exports the limited output y, unlimited output x, and HardLimiter lim.
┌─────┐ upper ┌─────┐ │ │ /¯¯¯¯¯ │ │ u -> │ K │ -> x / -> │ R │ -> y │ │ _____/ │ │ └─────┘ lower └─────┘
- Parameters:
- ustr, BaseVar
Input variable, or an equation string for constructing an anonymous variable
- Kstr, BaseParam, BaseService
Initial gain for u before limiter
- Rstr, BaseParam, BaseService
Post limiter gain
- define()[source]
TODO: write docstring
- class andes.core.block.Piecewise(u, points: List | Tuple, funs: List | Tuple, name=None, tex_name=None, info=None)[source]
Piecewise block. Outputs an algebraic variable y.
This block takes a list of N points, [x0, x1, ...x_{n-1}] to define N+1 ranges, namely (-inf, x0), (x0, x1), ..., (x_{n-1}, +inf). and a list of N+1 function strings [fun0, ..., fun_n].
Inputs that fall within each range applies the corresponding function. The first range (-inf, x0) applies fun_0, and the last range (x_{n-1}, +inf) applies the last function fun_n.
The function returns zero if no condition is met.
- Parameters:
- pointslist, tuple
A list of piecewise points. Need to be provided in the constructor function.
- funslist, tuple
A list of strings for the piecewise functions. Need to be provided in the overloaded define function.
- define()[source]
Build the equation string for the piecewise equations.
self.funs
needs to be provided with the function strings corresponding to each range.
- class andes.core.block.HVGate(u1, u2, name=None, tex_name=None, info=None)[source]
High Value Gate. Outputs the maximum of two inputs.
┌─────────┐ u1 -> │ HV Gate │ │ │ -> y u2 -> │ (MAX) │ └─────────┘
- class andes.core.block.LVGate(u1, u2, name=None, tex_name=None, info=None)[source]
Low Value Gate. Outputs the minimum of the two inputs.
┌─────────┐ u1 -> │ LV Gate | │ | -> y u2 -> │ (MIN) | └─────────┘
- class andes.core.block.DeadBand1(u, center, lower, upper, gain=1.0, enable=True, name=None, tex_name=None, info=None, namespace='local')[source]
Deadband type 1 (linear, non-step).
- Parameters:
- center
Default value when within the deadband. If the input is an error signal, center should be set to zero.
- gain
Gain multiplied to DeadBand discrete block's output.
Notes
Block diagram
| / ______|__/___ -> Gain -> DeadBand1_y / | / |
First Order#
- class andes.core.block.Integrator(u, T, K, y0, check_init=True, name=None, tex_name=None, info=None)[source]
Integrator block.
┌──────┐ u -> │ K/sT │ -> y └──────┘
Exports a differential variable y.
The initial output needs to be specified through y0.
- define()[source]
Implemented equation and the initial condition are
\[\begin{split}\dot{y} = K u \\ y^{(0)} = 0\end{split}\]
- class andes.core.block.IntegratorAntiWindup(u, T, K, y0, lower, upper, name=None, tex_name=None, info=None, no_warn=False)[source]
Integrator block with anti-windup limiter.
upper /¯¯¯¯¯ ┌──────┐ u -> │ K/sT │ -> y └──────┘ _____/ lower
Exports a differential variable y and an AntiWindup lim. The initial output must be specified through y0.
- define()[source]
Implemented equation and the initial condition are
\[\begin{split}\dot{y} = K u \\ y^{(0)} = 0\end{split}\]
- class andes.core.block.Lag(u, T, K, D=1, name=None, tex_name=None, info=None)[source]
Lag (low pass filter) transfer function.
┌────────┐ │ K │ u -> │ ────── │ -> y │ D + sT │ └────────┘
Exports one state variable y as the output.
- Parameters:
- K
Gain
- T
Time constant
- D
Constant
- u
Input variable
- define()[source]
Notes
Equations and initial values are
\[\begin{split}T \dot{y} &= (Ku - Dy) \\ y^{(0)} &= Ku / D\end{split}\]
- class andes.core.block.LagAntiWindup(u, T, K, lower, upper, D=1, name=None, tex_name=None, info=None)[source]
Lag (low pass filter) transfer function block with an anti-windup limiter.
upper /¯¯¯¯¯¯ ┌────────┐ │ K │ u -> │ ────── │ -> y │ D + sT │ └────────┘ ______/ lower
Exports one state variable y as the output and one AntiWindup instance lim.
- Parameters:
- K
Gain
- T
Time constant
- D
Constant
- u
Input variable
- define()[source]
Notes
Equations and initial values are
\[\begin{split}T \dot{y} &= (Ku - Dy) \\ y^{(0)} &= K u / D\end{split}\]
- class andes.core.block.LagFreeze(u, T, K, freeze, D=1, name=None, tex_name=None, info=None)[source]
Lag with an input to freeze the state.
During the period when the freeze signal is 1, the LagFreeze output will be frozen.
- define()[source]
Notes
Equations and initial values are
\[\begin{split}T \dot{y} &= (1 - freeze) * (Ku - y) \\ y^{(0)} &= K u\end{split}\]
- class andes.core.block.LagAWFreeze(u, T, K, lower, upper, freeze, D=1, name=None, tex_name=None, info=None)[source]
Lag with anti-windup limiter and state freeze.
Note that the output y is a state variable.
- define()[source]
Notes
Equations and initial values are
\[\begin{split}T \dot{y} &= (1 - freeze) (Ku - y) \\ y^{(0)} &= K u\end{split}\]y
undergoes an anti-windup limiter.
- class andes.core.block.LagRate(u, T, K, rate_lower, rate_upper, D=1, rate_no_lower=False, rate_no_upper=False, rate_lower_cond=None, rate_upper_cond=None, name=None, tex_name=None, info=None)[source]
Lag (low pass filter) transfer function block with a rate limiter.
/ rate_upper ┌────────┐ │ K │ u -> │ ────── │ -> y │ D + sT │ └────────┘ rate_lower /
Exports one state variable y as the output and one AntiWindupRate instance lim.
- Parameters:
- K
Gain
- T
Time constant
- D
Constant
- u
Input variable
- define()[source]
Notes
Equations and initial values are
\[\begin{split}T \dot{y} &= (Ku - y) \\ y^{(0)} &= K u\end{split}\]
- class andes.core.block.LagAntiWindupRate(u, T, K, lower, upper, rate_lower, rate_upper, D=1, no_lower=False, no_upper=False, rate_no_lower=False, rate_no_upper=False, rate_lower_cond=None, rate_upper_cond=None, name=None, tex_name=None, info=None)[source]
Lag (low pass filter) transfer function block with a rate limiter and an anti-windup limiter.
upper rate_upper /¯¯¯¯¯¯ ┌────────┐ │ K │ u -> │ ────── │ -> y │ D + sT │ └────────┘ ______/ rate_lower lower
Exports one state variable y as the output and one AntiWindupRate instance lim.
- Parameters:
- K
Gain
- T
Time constant
- D
Constant
- u
Input variable
- define()[source]
Notes
Equations and initial values are
\[\begin{split}T \dot{y} &= (Ku - Dy) \\ y^{(0)} &= K u / D\end{split}\]
- class andes.core.block.Washout(u, T, K, name=None, tex_name=None, info=None)[source]
Washout filter (high pass) block.
┌────────┐ │ sK │ u -> │ ────── │ -> y │ 1 + sT │ └────────┘
Exports state x (symbol x') and output algebraic variable y.
- define()[source]
Notes
Equations and initial values:
\[\begin{split}T \dot{x'} &= (u - x') \\ T y &= K (u - x') \\ x'^{(0)} &= u \\ y^{(0)} &= 0\end{split}\]
- class andes.core.block.WashoutOrLag(u, T, K, name=None, zero_out=True, tex_name=None, info=None)[source]
Washout with the capability to convert to Lag when K = 0.
Can be enabled with zero_out. Need to provide name to construct.
Exports state x (symbol x'), output algebraic variable y, and a LessThan block LT.
- Parameters:
- zero_outbool, optional
If True,
sT
will become 1, and the washout will become a low-pass filter. If False, functions as a regular Washout.
- define()[source]
Notes
Equations and initial values:
\[\begin{split}T \dot{x'} &= (u - x') \\ T y = z_0 K (u - x') + z_1 T x \\ x'^{(0)} &= u \\ y^{(0)} &= 0\end{split}\]where
z_0
is a flag array for the greater-than-zero elements, andz_1
is that for the less-than or equal-to zero elements.
- class andes.core.block.LeadLag(u, T1, T2, K=1, zero_out=True, name=None, tex_name=None, info=None)[source]
Lead-Lag transfer function block in series implementation.
┌───────────┐ │ 1 + sT1 │ u -> │ K ─────── │ -> y │ 1 + sT2 │ └───────────┘
Exports two variables: internal state x and output algebraic variable y.
- Parameters:
- T1BaseParam
Time constant 1
- T2BaseParam
Time constant 2
- zero_outbool
True to allow zeroing out lead-lag as a pass through (when T1=T2=0)
Notes
To allow zeroing out lead-lag as a pure gain, set
zero_out
to True.- define()[source]
Notes
Implemented equations and initial values
\[\begin{split}T_2 \dot{x'} &= (u - x') \\ T_2 y &= K T_1 (u - x') + K T_2 x' + E_2 \, , \text{where} \\ E_2 = & \left\{\begin{matrix} (y - K x') &\text{ if } T_1 = T_2 = 0 \& zero\_out=True \\ 0& \text{ otherwise } \end{matrix}\right. \\ x'^{(0)} & = u\\ y^{(0)} & = Ku\\\end{split}\]
- class andes.core.block.LeadLagLimit(u, T1, T2, lower, upper, name=None, tex_name=None, info=None)[source]
Lead-Lag transfer function block with hard limiter (series implementation).
┌─────────┐ upper │ 1 + sT1 │ /¯¯¯¯¯ u -> │ ─────── │ -> ynl / -> y │ 1 + sT2 │ _____/ └─────────┘ lower
Exports four variables: state x, output before hard limiter ynl, output y, and AntiWindup lim.
- define()[source]
Notes
Implemented control block equations (without limiter) and initial values
\[\begin{split}T_2 \dot{x'} &= (u - x') \\ T_2 y &= T_1 (u - x') + T_2 x' \\ x'^{(0)} &= y^{(0)} = u\end{split}\]
Second Order#
- class andes.core.block.Lag2ndOrd(u, K, T1, T2, name=None, tex_name=None, info=None)[source]
Second order lag transfer function (low-pass filter).
┌──────────────────┐ │ K │ u -> │ ──────────────── │ -> y │ 1 + sT1 + s^2 T2 │ └──────────────────┘
Exports one two state variables (x, y), where y is the output.
- Parameters:
- u
Input
- K
Gain
- T1
First order time constant
- T2
Second order time constant
- define()[source]
Notes
Implemented equations and initial values are
\[\begin{split}T_2 \dot{x} &= Ku - y - T_1 x \\ \dot{y} &= x \\ x^{(0)} &= 0 \\ y^{(0)} &= K u\end{split}\]
- class andes.core.block.LeadLag2ndOrd(u, T1, T2, T3, T4, zero_out=False, name=None, tex_name=None, info=None)[source]
Second-order lead-lag transfer function block.
┌──────────────────┐ │ 1 + sT3 + s^2 T4 │ u -> │ ──────────────── │ -> y │ 1 + sT1 + s^2 T2 │ └──────────────────┘
Exports two internal states (x1 and x2) and output algebraic variable y.
The current implementation allows any or all parameters to be zero. Four
LessThan
blocks are used to check if the parameter values are all zero. If yes,y = u
will be imposed in the algebraic equation.- define()[source]
Notes
Implemented equations and initial values are
\[\begin{split}T_2 \dot{x}_1 &= u - x_2 - T_1 x_1 \\ \dot{x}_2 &= x_1 \\ T_2 y &= T_2 x_2 + T_2 T_3 x_1 + T_4 (u - x_2 - T_1 x_1) + E_2 \, , \text{ where} \\ E_2 = & \left\{\begin{matrix} (y - x_2) &\text{ if } T_1 = T_2 = T_3 = T_4 = 0 \& zero\_out=True \\ 0& \text{ otherwise } \end{matrix}\right. \\ x_1^{(0)} &= 0 \\ x_2^{(0)} &= y^{(0)} = u\end{split}\]
PI Controllers#
- class andes.core.block.PIController(u, kp, ki, ref=0.0, x0=0.0, name=None, tex_name=None, info=None)[source]
Proportional Integral Controller.
The controller takes an error signal as the input. It takes an optional ref signal, which will be subtracted from the input.
- Parameters:
- uBaseVar
The input variable instance
- kpBaseParam
The proportional gain parameter instance
- ki[type]
The integral gain parameter instance
- define()[source]
Define equations for the PI Controller.
Notes
One state variable
xi
and one algebraic variabley
are added.Equations implemented are
\[\begin{split}\dot{x_i} &= k_i * (u - ref) \\ y &= x_i + k_p * (u - ref)\end{split}\]
- class andes.core.block.PIAWHardLimit(u, kp, ki, aw_lower, aw_upper, lower, upper, no_lower=False, no_upper=False, ref=0.0, x0=0.0, name=None, tex_name=None, info=None)[source]
PI controller with anti-windup limiter on the integrator and hard limit on the output.
Limits
lower
andupper
are on the final output, andaw_lower
aw_upper
are on the integrator.- define()[source]
Define equations for the PI Controller.
Notes
One state variable
xi
and one algebraic variabley
are added.Equations implemented are
\[\begin{split}\dot{x_i} &= k_i * (u - ref) \\ y &= x_i + k_p * (u - ref)\end{split}\]
- class andes.core.block.PITrackAW(u, kp, ki, ks, lower, upper, no_lower=False, no_upper=False, ref=0.0, x0=0.0, name=None, tex_name=None, info=None)[source]
PI with tracking anti-windup limiter
- define()[source]
Function for setting the initialization and equation strings for internal variables. This method must be implemented by subclasses.
The equations should be written with the "final" variable names. Let's say the block instance is named blk (kept at
self.name
of the block), and an internal variable v is defined. The internal variable will be captured asblk_v
by the parent model. Therefore, all equations should use{self.name}_v
to represent variablev
, where{self.name}
is the name of the block at run time.On the other hand, the names of externally provided parameters or variables are obtained by directly accessing the
name
attribute. For example, ifself.T
is a parameter provided through the block constructor,{self.T.name}
should be used in the equation.See also
PIController.define
Equations for the PI Controller block
Examples
An internal variable
v
has a trivial equationT = v
, where T is a parameter provided to the block constructor.In the model, one has
class SomeModel(): def __init__(...) self.input = Algeb() self.T = Param() self.blk = ExampleBlock(u=self.input, T=self.T)
In the ExampleBlock function, the internal variable is defined in the constructor as
class ExampleBlock(): def __init__(...): self.v = Algeb() self.vars = {'v', self.v}
In the
define
, the equation is provided asdef define(self): self.v.v_str = '{self.T.name}' self.v.e_str = '{self.T.name} - {self.name}_v'
In the parent model,
v
from the block will be captured asblk_v
, and the equation will evaluate intoself.blk_v.v_str = 'T' self.blk_v.e_str = 'T - blk_v'
- class andes.core.block.PIFreeze(u, kp, ki, freeze, ref=0.0, x0=0.0, name=None, tex_name=None, info=None)[source]
PI controller with state freeze.
Freezes state when the corresponding freeze == 1.
Notes
Tested in experimental.TestPITrackAW.PIFreeze.
- define()[source]
Notes
One state variable
xi
and one algebraic variabley
are added.Equations implemented are
\[\begin{split}\dot{x_i} &= k_i * (u - ref) \\ y &= (1-freeze) * (x_i + k_p * (u - ref)) + freeze * y\end{split}\]
- class andes.core.block.PITrackAWFreeze(u, kp, ki, ks, lower, upper, freeze, no_lower=False, no_upper=False, ref=0.0, x0=0.0, name=None, tex_name=None, info=None)[source]
PI controller with tracking anti-windup limiter and state freeze.
- define()[source]
Function for setting the initialization and equation strings for internal variables. This method must be implemented by subclasses.
The equations should be written with the "final" variable names. Let's say the block instance is named blk (kept at
self.name
of the block), and an internal variable v is defined. The internal variable will be captured asblk_v
by the parent model. Therefore, all equations should use{self.name}_v
to represent variablev
, where{self.name}
is the name of the block at run time.On the other hand, the names of externally provided parameters or variables are obtained by directly accessing the
name
attribute. For example, ifself.T
is a parameter provided through the block constructor,{self.T.name}
should be used in the equation.See also
PIController.define
Equations for the PI Controller block
Examples
An internal variable
v
has a trivial equationT = v
, where T is a parameter provided to the block constructor.In the model, one has
class SomeModel(): def __init__(...) self.input = Algeb() self.T = Param() self.blk = ExampleBlock(u=self.input, T=self.T)
In the ExampleBlock function, the internal variable is defined in the constructor as
class ExampleBlock(): def __init__(...): self.v = Algeb() self.vars = {'v', self.v}
In the
define
, the equation is provided asdef define(self): self.v.v_str = '{self.T.name}' self.v.e_str = '{self.T.name} - {self.name}_v'
In the parent model,
v
from the block will be captured asblk_v
, and the equation will evaluate intoself.blk_v.v_str = 'T' self.blk_v.e_str = 'T - blk_v'
- class andes.core.block.PIDController(u, kp, ki, kd, Td, name, ref=0.0, x0=0.0, tex_name=None, info=None)[source]
Proportional Integral Derivative Controller.
┌────────────────────┐ │ ki skd │ u -> │kp + ─── + ─────── │ -> y │ s 1 + sTd │ └────────────────────┘
The controller takes an error signal as the input. It takes an optional
ref
signal, which will be subtracted from the input.The name is suggessted to be specified the same as the instance name.
This block assembles a
PIController
and aWashout
.- Parameters:
- uBaseVar
The input variable instance
- kpBaseParam
The proportional gain parameter instance
- kiBaseParam
The integral gain parameter instance
- kdBaseParam
The derivative gain parameter instance
- TdBaseParam
The derivative time constant parameter instance
- x0BaseParam
The initial value of the integrator
- define()[source]
Define equations for the PID Controller.
Notes
One PIController
PIC
, one Washoutxd
, and one algebraic variabley
are added.Equations implemented are
\[\begin{split}\dot{x_i} &= k_i * (u - ref) \\ xd &= Washout(u - ref) y &= x_i + k_p * (u - ref) + xd\end{split}\]
- class andes.core.block.PIDAWHardLimit(u, kp, ki, kd, Td, aw_lower, aw_upper, lower, upper, name, no_lower=False, no_upper=False, ref=0.0, x0=0.0, tex_name=None, info=None)[source]
PID controller with anti-windup limiter on the integrator and hard limit on the output.
upper /¯¯¯¯¯¯ ┌────────────────────┐ │ ki skd │ u -> │kp + ─── + ─────── │ -> y │ s 1 + sTd │ └────────────────────┘ ______/ lower
The controller takes an error signal as the input.
Limits
lower
andupper
are on the final output, andaw_lower
aw_upper
are on the integrator.The name is suggessted to be specified the same as the instance name.
- Parameters:
- uBaseVar
The input variable instance
- kpBaseParam
The proportional gain parameter instance
- kiBaseParam
The integral gain parameter instance
- kdBaseParam
The derivative gain parameter instance
- TdBaseParam
The derivative time constant parameter instance
- define()[source]
Define equations for the PI Controller.
Notes
One state variable
xi
and one algebraic variabley
are added.Equations implemented are
\[\begin{split}\dot{x_i} &= k_i * (u - ref) \\ y &= x_i + k_p * (u - ref)\end{split}\]
- class andes.core.block.PIDTrackAW(u, kp, ki, kd, Td, ks, lower, upper, no_lower=False, no_upper=False, ref=0.0, x0=0.0, name=None, tex_name=None, info=None)[source]
PID with tracking anti-windup limiter
- define()[source]
Function for setting the initialization and equation strings for internal variables. This method must be implemented by subclasses.
The equations should be written with the "final" variable names. Let's say the block instance is named blk (kept at
self.name
of the block), and an internal variable v is defined. The internal variable will be captured asblk_v
by the parent model. Therefore, all equations should use{self.name}_v
to represent variablev
, where{self.name}
is the name of the block at run time.On the other hand, the names of externally provided parameters or variables are obtained by directly accessing the
name
attribute. For example, ifself.T
is a parameter provided through the block constructor,{self.T.name}
should be used in the equation.See also
PIController.define
Equations for the PI Controller block
Examples
An internal variable
v
has a trivial equationT = v
, where T is a parameter provided to the block constructor.In the model, one has
class SomeModel(): def __init__(...) self.input = Algeb() self.T = Param() self.blk = ExampleBlock(u=self.input, T=self.T)
In the ExampleBlock function, the internal variable is defined in the constructor as
class ExampleBlock(): def __init__(...): self.v = Algeb() self.vars = {'v', self.v}
In the
define
, the equation is provided asdef define(self): self.v.v_str = '{self.T.name}' self.v.e_str = '{self.T.name} - {self.name}_v'
In the parent model,
v
from the block will be captured asblk_v
, and the equation will evaluate intoself.blk_v.v_str = 'T' self.blk_v.e_str = 'T - blk_v'
Saturation#
- class andes.models.exciter.ExcExpSat(E1, SE1, E2, SE2, name=None, tex_name=None, info=None)[source]
Exponential exciter saturation block to calculate A and B from E1, SE1, E2 and SE2. Input parameters will be corrected and the user will be warned. To disable saturation, set either E1 or E2 to 0.
- Parameters:
- E1BaseParam
First point of excitation field voltage
- SE1: BaseParam
Coefficient corresponding to E1
- E2BaseParam
Second point of excitation field voltage
- SE2: BaseParam
Coefficient corresponding to E2
- define()[source]
Notes
The implementation solves for coefficients A and B which satisfy
\[E_1 S_{E1} = A e^{E1\times B} E_2 S_{E2} = A e^{E2\times B}\]The solutions are given by
\[E_{1} S_{E1} e^{ \frac{E_1 \log{ \left( \frac{E_2 S_{E2}} {E_1 S_{E1}} \right)} } {E_1 - E_2}} - \frac{\log{\left(\frac{E_2 S_{E2}}{E_1 S_{E1}} \right)}}{E_1 - E_2}\]
Naming Convention#
We loosely follow a naming convention when using modeling blocks. An instance of
a modeling block is named with a two-letter acronym, followed by a number or a
meaningful but short variaiable name. The acronym and the name are spelled in
one word without underscore, as the output of the block already contains _y
.
For example, two washout filters can be names WO1
and WO2
. In another
case, a first-order lag function for voltage sensing can be called LGv
, or
even LG
if there is only one Lag instance in the model.
Naming conventions are not strictly enforced. Expressiveness and concision are encouraged.