RenGen#

Renewable generator (converter) group.

Common Parameters: u, name, bus, gen, Sn

Common Variables: Pe, Qe

Available models: REGCA1, REGCV1, REGCV2

REGCA1#

Renewable energy generator model type A.

Implements REGCA1 in PSS/E, or REGC_A in PSLF.

Volim is the voltage limit for high voltage reactive current management, which should be large than static bus voltage (Volim > v), or initialization error will occur.

Parameters#

Name

Symbol

Description

Default

Unit

Properties

idx

unique device idx

u

\(u\)

connection status

1

bool

name

device name

bus

interface bus id

mandatory

gen

static generator index

mandatory

Sn

\(S_n\)

Model MVA base

100

MVA

Tg

\(T_g\)

converter time const.

0.100

s

Rrpwr

\(R_{rpwr}\)

Low voltage power logic (LVPL) ramp limit

10

p.u.

Brkpt

\(B_{rkpt}\)

LVPL characteristic voltage 2

1

p.u.

Zerox

\(Z_{erox}\)

LVPL characteristic voltage 1

0.500

p.u

Lvplsw

\(z_{Lvplsw}\)

Low volt. P logic: 1-enable, 0-disable

1

bool

Lvpl1

\(L_{vpl1}\)

LVPL gain

1

p.u

Volim

\(V_{olim}\)

Voltage lim for high volt. reactive current mgnt.

1.200

p.u.

Lvpnt1

\(L_{vpnt1}\)

High volt. point for low volt. active current mgnt.

0.800

p.u.

Lvpnt0

\(L_{vpnt0}\)

Low volt. point for low volt. active current mgnt.

0.400

p.u.

Iolim

\(I_{olim}\)

lower current limit for high volt. reactive current mgnt.

-1.500

p.u. (mach base)

current

Tfltr

\(T_{fltr}\)

Voltage filter T const for low volt. active current mgnt.

0.100

s

Khv

\(K_{hv}\)

Overvolt. compensation gain in high volt. reactive current mgnt.

0.700

Iqrmax

\(I_{qrmax}\)

Upper limit on the ROC for reactive current

1

p.u.

current

Iqrmin

\(I_{qrmin}\)

Lower limit on the ROC for reactive current

-1

p.u.

current

Accel

\(A_{ccel}\)

Acceleration factor

0

gammap

\(\gamma_P\)

P ratio of linked static gen

1

gammaq

\(\gamma_Q\)

Q ratio of linked static gen

1

ra

\(r_a\)

0

xs

\(x_s\)

0

Variables#

Name

Symbol

Type

Description

Unit

Properties

S1_y

\(y_{S_1}\)

State

State in lag TF

v_str

S2_y

\(y_{S_2}\)

State

State in lag transfer function

v_str

S0_y

\(y_{S_0}\)

State

State in lag TF

v_str

LVG_y

\(y_{L_{VG}}\)

Algeb

Output of piecewise

v_str

Ipcmd

\(I_{pcmd}\)

Algeb

current component for active power

v_str

Iqcmd

\(I_{qcmd}\)

Algeb

current component for reactive power

v_str

LVPL_y

\(y_{L_{VPL}}\)

Algeb

Output of piecewise

v_str

Ipout

\(I_{pout}\)

Algeb

Output Ip current

v_str

HVG_x

\(x_{H_{VG}}\)

Algeb

Value before limiter

v_str

HVG_y

\(y_{H_{VG}}\)

Algeb

Output after limiter and post gain

v_str

Iqout_x

\(x_{I^{qout}}\)

Algeb

Value before limiter

v_str

Iqout_y

\(y_{I^{qout}}\)

Algeb

Output after limiter and post gain

v_str

Pe

\(P_{e}\)

Algeb

Active power output

v_str

Qe

\(Q_{e}\)

Algeb

Reactive power output

v_str

a

\(\theta\)

ExtAlgeb

Bus voltage angle

v

\(V\)

ExtAlgeb

Bus voltage magnitude

Initialization Equations#

Name

Symbol

Type

Initial Value

S1_y

\(y_{S_1}\)

State

\(- I_{qcmd}\)

S2_y

\(y_{S_2}\)

State

\(1.0 V\)

S0_y

\(y_{S_0}\)

State

\(I_{pcmd}\)

LVG_y

\(y_{L_{VG}}\)

Algeb

\(\operatorname{FixPiecewise}{\left(\left( 0, \ L_{vpnt0} \geq V\right),\left( k_{LVG} \left(- L_{vpnt0} + V\right), \ L_{vpnt1} \geq V\right),\left( 1, \ \text{True}\right) \right)}\)

Ipcmd

\(I_{pcmd}\)

Algeb

\(\frac{I_{pcmd0} \operatorname{Indicator}{\left(y_{L_{VG}} > 0 \right)}}{y_{L_{VG}}} + \operatorname{Indicator}{\left(y_{L_{VG}} \leq 0 \right)}\)

Iqcmd

\(I_{qcmd}\)

Algeb

\(I_{qcmd0}\)

LVPL_y

\(y_{L_{VPL}}\)

Algeb

\(\operatorname{FixPiecewise}{\left(\left( 9999 - 9999 z_{Lvplsw}, \ Z_{erox} \geq y_{S_2}\right),\left( k_{LVPL} \left(- Z_{erox} + y_{S_2}\right) - 9999 z_{Lvplsw} + 9999, \ B_{rkpt} \geq y_{S_2}\right),\left( 9999, \ \text{True}\right) \right)}\)

Ipout

\(I_{pout}\)

Algeb

\(I_{pcmd} y_{L_{VG}}\)

HVG_x

\(x_{H_{VG}}\)

Algeb

\(K_{hv} \left(V - V_{olim}\right)\)

HVG_y

\(y_{H_{VG}}\)

Algeb

\(HVG_{lim zi} x_{H_{VG}}\)

Iqout_x

\(x_{I^{qout}}\)

Algeb

\(- y_{H_{VG}} + y_{S_1}\)

Iqout_y

\(y_{I^{qout}}\)

Algeb

\(I_{olim} Iqout_{lim zl} + Iqout_{lim zi} x_{I^{qout}}\)

Pe

\(P_{e}\)

Algeb

\(P_{0}\)

Qe

\(Q_{e}\)

Algeb

\(Q_{0}\)

a

\(\theta\)

ExtAlgeb

v

\(V\)

ExtAlgeb

Differential Equations#

Name

Symbol

Type

RHS of Equation "T x' = f(x, y)"

T (LHS)

S1_y

\(y_{S_1}\)

State

\(- I_{qcmd} - y_{S_1}\)

\(T_g\)

S2_y

\(y_{S_2}\)

State

\(1.0 V - y_{S_2}\)

\(T_{fltr}\)

S0_y

\(y_{S_0}\)

State

\(I_{pcmd} - y_{S_0}\)

\(T_g\)

Algebraic Equations#

Name

Symbol

Type

RHS of Equation "0 = g(x, y)"

LVG_y

\(y_{L_{VG}}\)

Algeb

\(- y_{L_{VG}} + \operatorname{FixPiecewise}{\left(\left( 0, \ L_{vpnt0} \geq V\right),\left( k_{LVG} \left(- L_{vpnt0} + V\right), \ L_{vpnt1} \geq V\right),\left( 1, \ \text{True}\right) \right)}\)

Ipcmd

\(I_{pcmd}\)

Algeb

\(I_{pcmd0} - I_{pcmd} y_{L_{VG}}\)

Iqcmd

\(I_{qcmd}\)

Algeb

\(I_{qcmd0} - I_{qcmd}\)

LVPL_y

\(y_{L_{VPL}}\)

Algeb

\(- y_{L_{VPL}} + \operatorname{FixPiecewise}{\left(\left( 9999 - 9999 z_{Lvplsw}, \ Z_{erox} \geq y_{S_2}\right),\left( k_{LVPL} \left(- Z_{erox} + y_{S_2}\right) - 9999 z_{Lvplsw} + 9999, \ B_{rkpt} \geq y_{S_2}\right),\left( 9999, \ \text{True}\right) \right)}\)

Ipout

\(I_{pout}\)

Algeb

\(- I_{pout} + y_{L_{VG}} y_{S_0}\)

HVG_x

\(x_{H_{VG}}\)

Algeb

\(K_{hv} \left(V - V_{olim}\right) - x_{H_{VG}}\)

HVG_y

\(y_{H_{VG}}\)

Algeb

\(HVG_{lim zi} x_{H_{VG}} - y_{H_{VG}}\)

Iqout_x

\(x_{I^{qout}}\)

Algeb

\(- x_{I^{qout}} - y_{H_{VG}} + y_{S_1}\)

Iqout_y

\(y_{I^{qout}}\)

Algeb

\(I_{olim} Iqout_{lim zl} + Iqout_{lim zi} x_{I^{qout}} - y_{I^{qout}}\)

Pe

\(P_{e}\)

Algeb

\(I_{pout} V - P_{e}\)

Qe

\(Q_{e}\)

Algeb

\(- Q_{e} + V y_{I^{qout}}\)

a

\(\theta\)

ExtAlgeb

\(- P_{e}\)

v

\(V\)

ExtAlgeb

\(- Q_{e}\)

Services#

Name

Symbol

Equation

Type

p0

\(P_0\)

\(P_{0s} \gamma_{P}\)

ConstService

q0

\(Q_0\)

\(Q_{0s} \gamma_{Q}\)

ConstService

q0gt0

\(z_{q0>0}\)

\(\operatorname{Indicator}{\left(Q_{0} > 0 \right)}\)

ConstService

q0lt0

\(z_{q0<0}\)

\(\operatorname{Indicator}{\left(Q_{0} < 0 \right)}\)

ConstService

Ipcmd0

\(I_{pcmd0}\)

\(\frac{P_{0}}{V}\)

ConstService

Iqcmd0

\(I_{qcmd0}\)

\(- \frac{Q_{0}}{V}\)

ConstService

kLVG

\(k_{LVG}\)

\(\frac{1}{- L_{vpnt0} + L_{vpnt1}}\)

ConstService

kLVPL

\(k_{LVPL}\)

\(\frac{L_{vpl1} z_{Lvplsw}}{B_{rkpt} - Z_{erox}}\)

ConstService

Discretes#

Name

Symbol

Type

Info

S1_lim

\(lim_{S_1}\)

AntiWindupRate

Limiter in Lag

S0_lim

\(lim_{S_0}\)

AntiWindupRate

Limiter in Lag

HVG_lim

\(lim_{H_{VG}}\)

HardLimiter

Iqout_lim

\(lim_{I^{qout}}\)

HardLimiter

Blocks#

Name

Symbol

Type

Info

LVG

\(L_{VG}\)

Piecewise

Ip gain during low voltage

S1

\(S_1\)

LagAntiWindupRate

Iqcmd delay

S2

\(S_2\)

Lag

Voltage filter with no anti-windup

LVPL

\(L_{VPL}\)

Piecewise

Low voltage Ipcmd upper limit

S0

\(S_0\)

LagAntiWindupRate

HVG

\(H_{VG}\)

GainLimiter

High voltage gain block

Iqout

\(I^{qout}\)

GainLimiter

Iq output block

Config Fields in [REGCA1]

Option

Symbol

Value

Info

Accepted values

allow_adjust

1

allow adjusting upper or lower limits

(0, 1)

adjust_lower

0

adjust lower limit

(0, 1)

adjust_upper

1

adjust upper limit

(0, 1)

REGCV1#

Voltage-controlled VSC with VSG control.

Includes double-loop PI control and swing equation based VSG control. Voltage measurement delays are ignored.

Parameters#

Name

Symbol

Description

Default

Unit

Properties

idx

unique device idx

u

\(u\)

connection status

1

bool

name

device name

bus

interface bus id

mandatory

gen

static generator index

mandatory

coi2

center of inertia 2 index

Sn

\(S_n\)

Model MVA base

100

MVA

fn

\(f\)

rated frequency

60

Tc

\(T_c\)

switch time constant

0.010

s

kw

\(k_\omega\)

speed droop on active power (reciprocal of droop)

0

p.u.

ipower

kv

\(k_v\)

reactive power droop on voltage

0

p.u.

power

M

\(M\)

Emulated startup time constant (M=2H)

10

s

power

D

\(D\)

Emulated damping coefficient

0

p.u.

power

ra

\(r_a\)

resistance

0

z

xs

\(x_s\)

reactance

0.200

z

gammap

\(\gamma_P\)

P ratio of linked static gen

1

gammaq

\(\gamma_Q\)

Q ratio of linked static gen

1

Kpvd

\(kp_{vd}\)

vd controller proportional gain

20

p.u.

power

Kivd

\(ki_{vd}\)

vd controller integral gain

0.001

p.u.

power

Kpvq

\(kp_{vq}\)

vq controller proportional gain

20

p.u.

power

Kivq

\(ki_{vq}\)

vq controller integral gain

0.001

p.u.

power

KpId

\(kp_{di}\)

Id controller proportional gain

500

p.u.

power

KiId

\(ki_{di}\)

Id controller integral gain

0.200

p.u.

power

KpIq

\(kp_{qi}\)

Iq controller proportional gain

500

p.u.

power

KiIq

\(ki_{qi}\)

Iq controller integral gain

0.200

p.u.

power

Variables#

Name

Symbol

Type

Description

Unit

Properties

dw

\(\Delta\omega\)

State

delta virtual rotor speed

pu (Hz)

v_str

delta

\(\delta\)

State

virtual delta

rad

v_str

PIvd_xi

\(xi_{PIvd}\)

State

Integrator output

v_str

PIvq_xi

\(xi_{PIvq}\)

State

Integrator output

v_str

PIId_xi

\(xi_{PIId}\)

State

Integrator output

v_str

PIIq_xi

\(xi_{PIIq}\)

State

Integrator output

v_str

udLag_y

\(y_{udLag}\)

State

State in lag transfer function

v_str

uqLag_y

\(y_{uqLag}\)

State

State in lag transfer function

v_str

ud

\(ud\)

AliasState

Alias of udLag_y

uq

\(uq\)

AliasState

Alias of uqLag_y

Pref2

\(P_{ref2}\)

Algeb

active power reference after adjusting by frequency

v_str

vref2

\(v_{ref2}\)

Algeb

voltage reference after adjusted by reactive power

v_str

omega

\(\omega\)

Algeb

virtual rotor speed

pu (Hz)

v_str

vd

\(V_{d}\)

Algeb

d-axis voltage

v_str

vq

\(V_{q}\)

Algeb

q-axis voltage

v_str

Pe

\(P_{e}\)

Algeb

active power injection from VSC

v_str

Qe

\(Q_{e}\)

Algeb

reactive power injection from VSC

v_str

Id

\(I_{d}\)

Algeb

d-axis current

v_str

Iq

\(I_{q}\)

Algeb

q-axis current

v_str

PIvd_y

\(y_{PIvd}\)

Algeb

PI output

v_str

PIvq_y

\(y_{PIvq}\)

Algeb

PI output

v_str

PIId_y

\(y_{PIId}\)

Algeb

PI output

v_str

PIIq_y

\(y_{PIIq}\)

Algeb

PI output

v_str

udref

\(u_{dref}\)

Algeb

ud reference

v_str

uqref

\(u_{qref}\)

Algeb

uq reference

v_str

a

\(\theta\)

ExtAlgeb

Bus voltage angle

v

\(V\)

ExtAlgeb

Bus voltage magnitude

Idref

\(Idref\)

AliasAlgeb

Alias of PIvd_y

Iqref

\(Iqref\)

AliasAlgeb

Alias of PIvq_y

Initialization Equations#

Name

Symbol

Type

Initial Value

dw

\(\Delta\omega\)

State

\(0\)

delta

\(\delta\)

State

\(\theta\)

PIvd_xi

\(xi_{PIvd}\)

State

\(I_{d0}\)

PIvq_xi

\(xi_{PIvq}\)

State

\(I_{q0}\)

PIId_xi

\(xi_{PIId}\)

State

\(0.0\)

PIIq_xi

\(xi_{PIIq}\)

State

\(0.0\)

udLag_y

\(y_{udLag}\)

State

\(u_{dref}\)

uqLag_y

\(y_{uqLag}\)

State

\(u_{qref}\)

ud

\(ud\)

AliasState

uq

\(uq\)

AliasState

Pref2

\(P_{ref2}\)

Algeb

\(P_{ref} u\)

vref2

\(v_{ref2}\)

Algeb

\(V_{ref} u\)

omega

\(\omega\)

Algeb

\(u\)

vd

\(V_{d}\)

Algeb

\(v_{d0}\)

vq

\(V_{q}\)

Algeb

\(v_{q0}\)

Pe

\(P_{e}\)

Algeb

\(P_{ref}\)

Qe

\(Q_{e}\)

Algeb

\(Q_{ref}\)

Id

\(I_{d}\)

Algeb

\(I_{d0}\)

Iq

\(I_{q}\)

Algeb

\(I_{q0}\)

PIvd_y

\(y_{PIvd}\)

Algeb

\(I_{d0} + kp_{vd} \left(- V_{d} + v_{ref2}\right)\)

PIvq_y

\(y_{PIvq}\)

Algeb

\(I_{q0} + V_{q} kp_{vq}\)

PIId_y

\(y_{PIId}\)

Algeb

\(kp_{di} \left(- I_{d} + y_{PIvd}\right)\)

PIIq_y

\(y_{PIIq}\)

Algeb

\(kp_{qi} \left(- I_{q} + y_{PIvq}\right)\)

udref

\(u_{dref}\)

Algeb

\(u_{dref0}\)

uqref

\(u_{qref}\)

Algeb

\(u_{qref0}\)

a

\(\theta\)

ExtAlgeb

v

\(V\)

ExtAlgeb

Idref

\(Idref\)

AliasAlgeb

Iqref

\(Iqref\)

AliasAlgeb

Differential Equations#

Name

Symbol

Type

RHS of Equation "T x' = f(x, y)"

T (LHS)

dw

\(\Delta\omega\)

State

\(- D \Delta\omega - P_{e} + P_{ref2}\)

\(M\)

delta

\(\delta\)

State

\(2 \pi \Delta\omega f\)

PIvd_xi

\(xi_{PIvd}\)

State

\(ki_{vd} \left(- V_{d} + v_{ref2}\right)\)

PIvq_xi

\(xi_{PIvq}\)

State

\(V_{q} ki_{vq}\)

PIId_xi

\(xi_{PIId}\)

State

\(ki_{di} \left(- I_{d} + y_{PIvd}\right)\)

PIIq_xi

\(xi_{PIIq}\)

State

\(ki_{qi} \left(- I_{q} + y_{PIvq}\right)\)

udLag_y

\(y_{udLag}\)

State

\(u_{dref} - y_{udLag}\)

\(T_c\)

uqLag_y

\(y_{uqLag}\)

State

\(u_{qref} - y_{uqLag}\)

\(T_c\)

ud

\(ud\)

AliasState

\(0\)

uq

\(uq\)

AliasState

\(0\)

Algebraic Equations#

Name

Symbol

Type

RHS of Equation "0 = g(x, y)"

Pref2

\(P_{ref2}\)

Algeb

\(- P_{ref2} + P_{ref} u - \Delta\omega k_{\omega}\)

vref2

\(v_{ref2}\)

Algeb

\(V_{ref} + k_{v} \left(- Q_{e} + Q_{ref} u\right) - v_{ref2}\)

omega

\(\omega\)

Algeb

\(\Delta\omega - \omega + 1\)

vd

\(V_{d}\)

Algeb

\(V u \cos{\left(\delta - \theta \right)} - V_{d}\)

vq

\(V_{q}\)

Algeb

\(- V u \sin{\left(\delta - \theta \right)} - V_{q}\)

Pe

\(P_{e}\)

Algeb

\(I_{d} V_{d} + I_{q} V_{q} - P_{e}\)

Qe

\(Q_{e}\)

Algeb

\(I_{d} V_{q} - I_{q} V_{d} - Q_{e}\)

Id

\(I_{d}\)

Algeb

\(I_{d} r_{a} - I_{q} x_{s} + V_{d} - y_{udLag}\)

Iq

\(I_{q}\)

Algeb

\(I_{d} x_{s} + I_{q} r_{a} + V_{q} - y_{uqLag}\)

PIvd_y

\(y_{PIvd}\)

Algeb

\(kp_{vd} \left(- V_{d} + v_{ref2}\right) + xi_{PIvd} - y_{PIvd}\)

PIvq_y

\(y_{PIvq}\)

Algeb

\(V_{q} kp_{vq} + xi_{PIvq} - y_{PIvq}\)

PIId_y

\(y_{PIId}\)

Algeb

\(kp_{di} \left(- I_{d} + y_{PIvd}\right) + xi_{PIId} - y_{PIId}\)

PIIq_y

\(y_{PIIq}\)

Algeb

\(kp_{qi} \left(- I_{q} + y_{PIvq}\right) + xi_{PIIq} - y_{PIIq}\)

udref

\(u_{dref}\)

Algeb

\(- Iqref x_{s} + V_{d} - u_{dref} + y_{PIId}\)

uqref

\(u_{qref}\)

Algeb

\(Idref x_{s} + V_{q} - u_{qref} + y_{PIIq}\)

a

\(\theta\)

ExtAlgeb

\(- P_{e} u\)

v

\(V\)

ExtAlgeb

\(- Q_{e} u\)

Idref

\(Idref\)

AliasAlgeb

\(0\)

Iqref

\(Iqref\)

AliasAlgeb

\(0\)

Services#

Name

Symbol

Equation

Type

Pref

\(P_{ref}\)

\(P_{0s} \gamma_{P}\)

ConstService

Qref

\(Q_{ref}\)

\(Q_{0s} \gamma_{Q}\)

ConstService

ixs

\(1/xs\)

\(\frac{1}{x_{s}}\)

ConstService

Id0

\(I_{d0}\)

\(\frac{P_{ref} u}{V}\)

ConstService

Iq0

\(I_{q0}\)

\(- \frac{Q_{ref} u}{V}\)

ConstService

vd0

\(v_{d0}\)

\(V u\)

ConstService

vq0

\(v_{q0}\)

\(0\)

ConstService

udref0

\(u_{dref0}\)

\(I_{d0} r_{a} - I_{q0} x_{s} + v_{d0}\)

ConstService

uqref0

\(u_{qref0}\)

\(I_{d0} x_{s} + I_{q0} r_{a} + v_{q0}\)

ConstService

Blocks#

Name

Symbol

Type

Info

PIvd

\(PIvd\)

PIController

PIvq

\(PIvq\)

PIController

PIId

\(PIId\)

PIController

PIIq

\(PIIq\)

PIController

udLag

\(udLag\)

Lag

uqLag

\(uqLag\)

Lag

Config Fields in [REGCV1]

Option

Symbol

Value

Info

Accepted values

allow_adjust

1

allow adjusting upper or lower limits

(0, 1)

adjust_lower

0

adjust lower limit

(0, 1)

adjust_upper

1

adjust upper limit

(0, 1)

REGCV2#

Voltage-controlled VSC with VSG control.

The inner-loop current PI controllers are replaced with lag transfer functions.

Parameters#

Name

Symbol

Description

Default

Unit

Properties

idx

unique device idx

u

\(u\)

connection status

1

bool

name

device name

bus

interface bus id

mandatory

gen

static generator index

mandatory

coi2

center of inertia 2 index

Sn

\(S_n\)

Model MVA base

100

MVA

fn

\(f\)

rated frequency

60

Tc

\(T_c\)

switch time constant

0.010

s

kw

\(k_\omega\)

speed droop on active power (reciprocal of droop)

0

p.u.

ipower

kv

\(k_v\)

reactive power droop on voltage

0

p.u.

power

M

\(M\)

Emulated startup time constant (M=2H)

10

s

power

D

\(D\)

Emulated damping coefficient

0

p.u.

power

ra

\(r_a\)

resistance

0

z

xs

\(x_s\)

reactance

0.200

z

gammap

\(\gamma_P\)

P ratio of linked static gen

1

gammaq

\(\gamma_Q\)

Q ratio of linked static gen

1

Kpvd

\(kp_{vd}\)

vd controller proportional gain

20

p.u.

power

Kivd

\(ki_{vd}\)

vd controller integral gain

0.001

p.u.

power

Kpvq

\(kp_{vq}\)

vq controller proportional gain

20

p.u.

power

Kivq

\(ki_{vq}\)

vq controller integral gain

0.001

p.u.

power

Tiq

\(T_{Iq}\)

0.010

Tid

\(T_{Id}\)

0.010

Variables#

Name

Symbol

Type

Description

Unit

Properties

dw

\(\Delta\omega\)

State

delta virtual rotor speed

pu (Hz)

v_str

delta

\(\delta\)

State

virtual delta

rad

v_str

PIvd_xi

\(xi_{PIvd}\)

State

Integrator output

v_str

PIvq_xi

\(xi_{PIvq}\)

State

Integrator output

v_str

LGId_y

\(y_{LGId}\)

State

State in lag transfer function

v_str

LGIq_y

\(y_{LGIq}\)

State

State in lag transfer function

v_str

Pref2

\(P_{ref2}\)

Algeb

active power reference after adjusting by frequency

v_str

vref2

\(v_{ref2}\)

Algeb

voltage reference after adjusted by reactive power

v_str

omega

\(\omega\)

Algeb

virtual rotor speed

pu (Hz)

v_str

vd

\(V_{d}\)

Algeb

d-axis voltage

v_str

vq

\(V_{q}\)

Algeb

q-axis voltage

v_str

Pe

\(P_{e}\)

Algeb

active power injection from VSC

v_str

Qe

\(Q_{e}\)

Algeb

reactive power injection from VSC

v_str

Id

\(I_{d}\)

Algeb

d-axis current

v_str

Iq

\(I_{q}\)

Algeb

q-axis current

v_str

PIvd_y

\(y_{PIvd}\)

Algeb

PI output

v_str

PIvq_y

\(y_{PIvq}\)

Algeb

PI output

v_str

a

\(\theta\)

ExtAlgeb

Bus voltage angle

v

\(V\)

ExtAlgeb

Bus voltage magnitude

Idref

\(Idref\)

AliasAlgeb

Alias of PIvd_y

Iqref

\(Iqref\)

AliasAlgeb

Alias of PIvq_y

Initialization Equations#

Name

Symbol

Type

Initial Value

dw

\(\Delta\omega\)

State

\(0\)

delta

\(\delta\)

State

\(\theta\)

PIvd_xi

\(xi_{PIvd}\)

State

\(I_{d0}\)

PIvq_xi

\(xi_{PIvq}\)

State

\(I_{q0}\)

LGId_y

\(y_{LGId}\)

State

\(- y_{PIvd}\)

LGIq_y

\(y_{LGIq}\)

State

\(y_{PIvq}\)

Pref2

\(P_{ref2}\)

Algeb

\(P_{ref} u\)

vref2

\(v_{ref2}\)

Algeb

\(V_{ref} u\)

omega

\(\omega\)

Algeb

\(u\)

vd

\(V_{d}\)

Algeb

\(v_{d0}\)

vq

\(V_{q}\)

Algeb

\(v_{q0}\)

Pe

\(P_{e}\)

Algeb

\(P_{ref}\)

Qe

\(Q_{e}\)

Algeb

\(Q_{ref}\)

Id

\(I_{d}\)

Algeb

\(I_{d0}\)

Iq

\(I_{q}\)

Algeb

\(I_{q0}\)

PIvd_y

\(y_{PIvd}\)

Algeb

\(I_{d0} + kp_{vd} \left(- V_{d} + v_{ref2}\right)\)

PIvq_y

\(y_{PIvq}\)

Algeb

\(I_{q0} + V_{q} kp_{vq}\)

a

\(\theta\)

ExtAlgeb

v

\(V\)

ExtAlgeb

Idref

\(Idref\)

AliasAlgeb

Iqref

\(Iqref\)

AliasAlgeb

Differential Equations#

Name

Symbol

Type

RHS of Equation "T x' = f(x, y)"

T (LHS)

dw

\(\Delta\omega\)

State

\(- D \Delta\omega - P_{e} + P_{ref2}\)

\(M\)

delta

\(\delta\)

State

\(2 \pi \Delta\omega f\)

PIvd_xi

\(xi_{PIvd}\)

State

\(ki_{vd} \left(- V_{d} + v_{ref2}\right)\)

PIvq_xi

\(xi_{PIvq}\)

State

\(V_{q} ki_{vq}\)

LGId_y

\(y_{LGId}\)

State

\(- y_{LGId} - y_{PIvd}\)

\(T_{Id}\)

LGIq_y

\(y_{LGIq}\)

State

\(- y_{LGIq} + y_{PIvq}\)

\(T_{Iq}\)

Algebraic Equations#

Name

Symbol

Type

RHS of Equation "0 = g(x, y)"

Pref2

\(P_{ref2}\)

Algeb

\(- P_{ref2} + P_{ref} u - \Delta\omega k_{\omega}\)

vref2

\(v_{ref2}\)

Algeb

\(V_{ref} + k_{v} \left(- Q_{e} + Q_{ref} u\right) - v_{ref2}\)

omega

\(\omega\)

Algeb

\(\Delta\omega - \omega + 1\)

vd

\(V_{d}\)

Algeb

\(V u \cos{\left(\delta - \theta \right)} - V_{d}\)

vq

\(V_{q}\)

Algeb

\(- V u \sin{\left(\delta - \theta \right)} - V_{q}\)

Pe

\(P_{e}\)

Algeb

\(I_{d} V_{d} + I_{q} V_{q} - P_{e}\)

Qe

\(Q_{e}\)

Algeb

\(I_{d} V_{q} - I_{q} V_{d} - Q_{e}\)

Id

\(I_{d}\)

Algeb

\(- I_{d} + y_{LGId}\)

Iq

\(I_{q}\)

Algeb

\(- I_{q} + y_{LGIq}\)

PIvd_y

\(y_{PIvd}\)

Algeb

\(kp_{vd} \left(- V_{d} + v_{ref2}\right) + xi_{PIvd} - y_{PIvd}\)

PIvq_y

\(y_{PIvq}\)

Algeb

\(V_{q} kp_{vq} + xi_{PIvq} - y_{PIvq}\)

a

\(\theta\)

ExtAlgeb

\(- P_{e} u\)

v

\(V\)

ExtAlgeb

\(- Q_{e} u\)

Idref

\(Idref\)

AliasAlgeb

\(0\)

Iqref

\(Iqref\)

AliasAlgeb

\(0\)

Services#

Name

Symbol

Equation

Type

Pref

\(P_{ref}\)

\(P_{0s} \gamma_{P}\)

ConstService

Qref

\(Q_{ref}\)

\(Q_{0s} \gamma_{Q}\)

ConstService

ixs

\(1/xs\)

\(\frac{1}{x_{s}}\)

ConstService

Id0

\(I_{d0}\)

\(\frac{P_{ref} u}{V}\)

ConstService

Iq0

\(I_{q0}\)

\(- \frac{Q_{ref} u}{V}\)

ConstService

vd0

\(v_{d0}\)

\(V u\)

ConstService

vq0

\(v_{q0}\)

\(0\)

ConstService

Blocks#

Name

Symbol

Type

Info

PIvd

\(PIvd\)

PIController

PIvq

\(PIvq\)

PIController

LGId

\(LGId\)

Lag

LGIq

\(LGIq\)

Lag

Config Fields in [REGCV2]

Option

Symbol

Value

Info

Accepted values

allow_adjust

1

allow adjusting upper or lower limits

(0, 1)

adjust_lower

0

adjust lower limit

(0, 1)

adjust_upper

1

adjust upper limit

(0, 1)